You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgemv_t_4.c 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541
  1. /***************************************************************************
  2. Copyright (c) 2017, The OpenBLAS Project
  3. All rights reserved.
  4. Redistribution and use in source and binary forms, with or without
  5. modification, are permitted provided that the following conditions are
  6. met:
  7. 1. Redistributions of source code must retain the above copyright
  8. notice, this list of conditions and the following disclaimer.
  9. 2. Redistributions in binary form must reproduce the above copyright
  10. notice, this list of conditions and the following disclaimer in
  11. the documentation and/or other materials provided with the
  12. distribution.
  13. 3. Neither the name of the OpenBLAS project nor the names of
  14. its contributors may be used to endorse or promote products
  15. derived from this software without specific prior written permission.
  16. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19. ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
  20. LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  25. USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. *****************************************************************************/
  27. #include "common.h"
  28. #define HAVE_KERNEL_4x4_VEC 1
  29. #define HAVE_KERNEL_4x2_VEC 1
  30. #define HAVE_KERNEL_4x1_VEC 1
  31. #if defined(HAVE_KERNEL_4x4_VEC) || defined(HAVE_KERNEL_4x2_VEC) || defined(HAVE_KERNEL_4x1_VEC)
  32. #include <vecintrin.h>
  33. #endif
  34. #define NBMAX 2048
  35. #ifdef HAVE_KERNEL_4x4
  36. #elif HAVE_KERNEL_4x4_VEC
  37. static void dgemv_kernel_4x4(BLASLONG n, FLOAT **ap, FLOAT *x, FLOAT *y)
  38. {
  39. BLASLONG i;
  40. __vector double* va0 = (__vector double*)ap[0];
  41. __vector double* va1 = (__vector double*)ap[1];
  42. __vector double* va2 = (__vector double*)ap[2];
  43. __vector double* va3 = (__vector double*)ap[3];
  44. __vector double* v_x =(__vector double*)x;
  45. __vector double temp0 = {0,0};
  46. __vector double temp1 = {0,0};
  47. __vector double temp2 = {0,0};
  48. __vector double temp3 = {0,0};
  49. for ( i=0; i< n/2; i+=2 )
  50. {
  51. temp0 += v_x[i] * va0[i] + v_x[i+1] * va0[i+1] ;
  52. temp1 += v_x[i] * va1[i] + v_x[i+1] * va1[i+1] ;
  53. temp2 += v_x[i] * va2[i] + v_x[i+1] * va2[i+1] ;
  54. temp3 += v_x[i] * va3[i] + v_x[i+1] * va3[i+1] ;
  55. }
  56. y[0] = temp0[0] + temp0[1];
  57. y[1] = temp1[0] + temp1[1];
  58. y[2] = temp2[0] + temp2[1];
  59. y[3] = temp3[0] + temp3[1];;
  60. }
  61. #else
  62. static void dgemv_kernel_4x4(BLASLONG n, FLOAT **ap, FLOAT *x, FLOAT *y)
  63. {
  64. BLASLONG i;
  65. FLOAT *a0,*a1,*a2,*a3;
  66. a0 = ap[0];
  67. a1 = ap[1];
  68. a2 = ap[2];
  69. a3 = ap[3];
  70. FLOAT temp0 = 0.0;
  71. FLOAT temp1 = 0.0;
  72. FLOAT temp2 = 0.0;
  73. FLOAT temp3 = 0.0;
  74. for ( i=0; i< n; i+=4 )
  75. {
  76. temp0 += a0[i]*x[i] + a0[i+1]*x[i+1] + a0[i+2]*x[i+2] + a0[i+3]*x[i+3];
  77. temp1 += a1[i]*x[i] + a1[i+1]*x[i+1] + a1[i+2]*x[i+2] + a1[i+3]*x[i+3];
  78. temp2 += a2[i]*x[i] + a2[i+1]*x[i+1] + a2[i+2]*x[i+2] + a2[i+3]*x[i+3];
  79. temp3 += a3[i]*x[i] + a3[i+1]*x[i+1] + a3[i+2]*x[i+2] + a3[i+3]*x[i+3];
  80. }
  81. y[0] = temp0;
  82. y[1] = temp1;
  83. y[2] = temp2;
  84. y[3] = temp3;
  85. }
  86. #endif
  87. #ifdef HAVE_KERNEL_4x2
  88. #elif HAVE_KERNEL_4x2_VEC
  89. static void dgemv_kernel_4x2(BLASLONG n, FLOAT **ap, FLOAT *x, FLOAT *y)
  90. {
  91. BLASLONG i;
  92. __vector double* va0 = (__vector double*)ap[0];
  93. __vector double* va1 = (__vector double*)ap[1];
  94. __vector double* v_x =(__vector double*)x;
  95. __vector double temp0 = {0,0};
  96. __vector double temp1 = {0,0};
  97. for ( i=0; i< n/2; i+=2 )
  98. {
  99. temp0 += v_x[i] * va0[i] + v_x[i+1] * va0[i+1] ;
  100. temp1 += v_x[i] * va1[i] + v_x[i+1] * va1[i+1] ;
  101. }
  102. y[0] = temp0[0] + temp0[1];
  103. y[1] = temp1[0] + temp1[1];
  104. }
  105. #else
  106. static void dgemv_kernel_4x2(BLASLONG n, FLOAT **ap, FLOAT *x, FLOAT *y)
  107. {
  108. BLASLONG i;
  109. FLOAT *a0,*a1;
  110. a0 = ap[0];
  111. a1 = ap[1];
  112. FLOAT temp0 = 0.0;
  113. FLOAT temp1 = 0.0;
  114. for ( i=0; i< n; i+=4 )
  115. {
  116. temp0 += a0[i]*x[i] + a0[i+1]*x[i+1] + a0[i+2]*x[i+2] + a0[i+3]*x[i+3];
  117. temp1 += a1[i]*x[i] + a1[i+1]*x[i+1] + a1[i+2]*x[i+2] + a1[i+3]*x[i+3];
  118. }
  119. y[0] = temp0;
  120. y[1] = temp1;
  121. }
  122. #endif
  123. #ifdef HAVE_KERNEL_4x1
  124. #elif HAVE_KERNEL_4x1_VEC
  125. static void dgemv_kernel_4x1(BLASLONG n, FLOAT *a0, FLOAT *x, FLOAT *y)
  126. {
  127. BLASLONG i;
  128. __vector double* va0 = (__vector double*)a0;
  129. __vector double* v_x =(__vector double*)x;
  130. __vector double temp0 = {0,0};
  131. for ( i=0; i< n/2; i+=2 )
  132. {
  133. temp0 += v_x[i] * va0[i] + v_x[i+1] * va0[i+1] ;
  134. }
  135. y[0] = temp0[0] + temp0[1];
  136. }
  137. #else
  138. static void dgemv_kernel_4x1(BLASLONG n, FLOAT *a0, FLOAT *x, FLOAT *y)
  139. {
  140. BLASLONG i;
  141. FLOAT temp0 = 0.0;
  142. for ( i=0; i< n; i+=4 )
  143. {
  144. temp0 += a0[i]*x[i] + a0[i+1]*x[i+1] + a0[i+2]*x[i+2] + a0[i+3]*x[i+3];
  145. }
  146. y[0] = temp0;
  147. }
  148. #endif
  149. static void copy_x(BLASLONG n, FLOAT *src, FLOAT *dest, BLASLONG inc_src)
  150. {
  151. BLASLONG i;
  152. for ( i=0; i<n; i++ )
  153. {
  154. *dest = *src;
  155. dest++;
  156. src += inc_src;
  157. }
  158. }
  159. static void add_y(BLASLONG n, FLOAT da , FLOAT *src, FLOAT *dest, BLASLONG inc_dest)
  160. {
  161. BLASLONG i;
  162. for ( i=0; i<n; i++ )
  163. {
  164. *dest += src[i] * da;
  165. dest += inc_dest;
  166. }
  167. return;
  168. }
  169. int CNAME(BLASLONG m, BLASLONG n, BLASLONG dummy1, FLOAT alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y, FLOAT *buffer)
  170. {
  171. BLASLONG register i;
  172. BLASLONG register j;
  173. FLOAT *a_ptr;
  174. FLOAT *x_ptr;
  175. FLOAT *y_ptr;
  176. BLASLONG n0;
  177. BLASLONG n1;
  178. BLASLONG m1;
  179. BLASLONG m2;
  180. BLASLONG m3;
  181. BLASLONG n2;
  182. FLOAT ybuffer[4],*xbuffer;
  183. FLOAT *ytemp;
  184. if ( m < 1 ) return(0);
  185. if ( n < 1 ) return(0);
  186. xbuffer = buffer;
  187. ytemp = buffer + (m < NBMAX ? m : NBMAX);
  188. n0 = n / NBMAX;
  189. n1 = (n % NBMAX) >> 2 ;
  190. n2 = n & 3 ;
  191. m3 = m & 3 ;
  192. m1 = m & -4 ;
  193. m2 = (m & (NBMAX-1)) - m3 ;
  194. BLASLONG NB = NBMAX;
  195. while ( NB == NBMAX )
  196. {
  197. m1 -= NB;
  198. if ( m1 < 0)
  199. {
  200. if ( m2 == 0 ) break;
  201. NB = m2;
  202. }
  203. y_ptr = y;
  204. a_ptr = a;
  205. x_ptr = x;
  206. if ( inc_x == 1 )
  207. xbuffer = x_ptr;
  208. else
  209. copy_x(NB,x_ptr,xbuffer,inc_x);
  210. FLOAT *ap[4];
  211. FLOAT *yp;
  212. BLASLONG register lda4 = 4 * lda;
  213. ap[0] = a_ptr;
  214. ap[1] = a_ptr + lda;
  215. ap[2] = ap[1] + lda;
  216. ap[3] = ap[2] + lda;
  217. if ( n0 > 0 )
  218. {
  219. BLASLONG nb1 = NBMAX / 4;
  220. for( j=0; j<n0; j++)
  221. {
  222. yp = ytemp;
  223. for( i = 0; i < nb1 ; i++)
  224. {
  225. dgemv_kernel_4x4(NB,ap,xbuffer,yp);
  226. ap[0] += lda4 ;
  227. ap[1] += lda4 ;
  228. ap[2] += lda4 ;
  229. ap[3] += lda4 ;
  230. yp += 4;
  231. }
  232. add_y(nb1*4, alpha, ytemp, y_ptr, inc_y );
  233. y_ptr += nb1 * inc_y * 4;
  234. a_ptr += nb1 * lda4 ;
  235. }
  236. }
  237. yp = ytemp;
  238. for( i = 0; i < n1 ; i++)
  239. {
  240. dgemv_kernel_4x4(NB,ap,xbuffer,yp);
  241. ap[0] += lda4 ;
  242. ap[1] += lda4 ;
  243. ap[2] += lda4 ;
  244. ap[3] += lda4 ;
  245. yp += 4;
  246. }
  247. if ( n1 > 0 )
  248. {
  249. add_y(n1*4, alpha, ytemp, y_ptr, inc_y );
  250. y_ptr += n1 * inc_y * 4;
  251. a_ptr += n1 * lda4 ;
  252. }
  253. if ( n2 & 2 )
  254. {
  255. dgemv_kernel_4x2(NB,ap,xbuffer,ybuffer);
  256. a_ptr += lda * 2;
  257. *y_ptr += ybuffer[0] * alpha;
  258. y_ptr += inc_y;
  259. *y_ptr += ybuffer[1] * alpha;
  260. y_ptr += inc_y;
  261. }
  262. if ( n2 & 1 )
  263. {
  264. dgemv_kernel_4x1(NB,a_ptr,xbuffer,ybuffer);
  265. a_ptr += lda;
  266. *y_ptr += ybuffer[0] * alpha;
  267. y_ptr += inc_y;
  268. }
  269. a += NB;
  270. x += NB * inc_x;
  271. }
  272. if ( m3 == 0 ) return(0);
  273. x_ptr = x;
  274. a_ptr = a;
  275. if ( m3 == 3 )
  276. {
  277. FLOAT xtemp0 = *x_ptr * alpha;
  278. x_ptr += inc_x;
  279. FLOAT xtemp1 = *x_ptr * alpha;
  280. x_ptr += inc_x;
  281. FLOAT xtemp2 = *x_ptr * alpha;
  282. FLOAT *aj = a_ptr;
  283. y_ptr = y;
  284. if ( lda == 3 && inc_y == 1 )
  285. {
  286. for ( j=0; j< ( n & -4) ; j+=4 )
  287. {
  288. y_ptr[j] += aj[0] * xtemp0 + aj[1] * xtemp1 + aj[2] * xtemp2;
  289. y_ptr[j+1] += aj[3] * xtemp0 + aj[4] * xtemp1 + aj[5] * xtemp2;
  290. y_ptr[j+2] += aj[6] * xtemp0 + aj[7] * xtemp1 + aj[8] * xtemp2;
  291. y_ptr[j+3] += aj[9] * xtemp0 + aj[10] * xtemp1 + aj[11] * xtemp2;
  292. aj += 12;
  293. }
  294. for ( ; j<n; j++ )
  295. {
  296. y_ptr[j] += aj[0] * xtemp0 + aj[1] * xtemp1 + aj[2] * xtemp2;
  297. aj += 3;
  298. }
  299. }
  300. else
  301. {
  302. if ( inc_y == 1 )
  303. {
  304. BLASLONG register lda2 = lda << 1;
  305. BLASLONG register lda4 = lda << 2;
  306. BLASLONG register lda3 = lda2 + lda;
  307. for ( j=0; j< ( n & -4 ); j+=4 )
  308. {
  309. y_ptr[j] += *aj * xtemp0 + *(aj+1) * xtemp1 + *(aj+2) * xtemp2;
  310. y_ptr[j+1] += *(aj+lda) * xtemp0 + *(aj+lda+1) * xtemp1 + *(aj+lda+2) * xtemp2;
  311. y_ptr[j+2] += *(aj+lda2) * xtemp0 + *(aj+lda2+1) * xtemp1 + *(aj+lda2+2) * xtemp2;
  312. y_ptr[j+3] += *(aj+lda3) * xtemp0 + *(aj+lda3+1) * xtemp1 + *(aj+lda3+2) * xtemp2;
  313. aj += lda4;
  314. }
  315. for ( ; j< n ; j++ )
  316. {
  317. y_ptr[j] += *aj * xtemp0 + *(aj+1) * xtemp1 + *(aj+2) * xtemp2 ;
  318. aj += lda;
  319. }
  320. }
  321. else
  322. {
  323. for ( j=0; j<n; j++ )
  324. {
  325. *y_ptr += *aj * xtemp0 + *(aj+1) * xtemp1 + *(aj+2) * xtemp2;
  326. y_ptr += inc_y;
  327. aj += lda;
  328. }
  329. }
  330. }
  331. return(0);
  332. }
  333. if ( m3 == 2 )
  334. {
  335. FLOAT xtemp0 = *x_ptr * alpha;
  336. x_ptr += inc_x;
  337. FLOAT xtemp1 = *x_ptr * alpha;
  338. FLOAT *aj = a_ptr;
  339. y_ptr = y;
  340. if ( lda == 2 && inc_y == 1 )
  341. {
  342. for ( j=0; j< ( n & -4) ; j+=4 )
  343. {
  344. y_ptr[j] += aj[0] * xtemp0 + aj[1] * xtemp1 ;
  345. y_ptr[j+1] += aj[2] * xtemp0 + aj[3] * xtemp1 ;
  346. y_ptr[j+2] += aj[4] * xtemp0 + aj[5] * xtemp1 ;
  347. y_ptr[j+3] += aj[6] * xtemp0 + aj[7] * xtemp1 ;
  348. aj += 8;
  349. }
  350. for ( ; j<n; j++ )
  351. {
  352. y_ptr[j] += aj[0] * xtemp0 + aj[1] * xtemp1 ;
  353. aj += 2;
  354. }
  355. }
  356. else
  357. {
  358. if ( inc_y == 1 )
  359. {
  360. BLASLONG register lda2 = lda << 1;
  361. BLASLONG register lda4 = lda << 2;
  362. BLASLONG register lda3 = lda2 + lda;
  363. for ( j=0; j< ( n & -4 ); j+=4 )
  364. {
  365. y_ptr[j] += *aj * xtemp0 + *(aj+1) * xtemp1 ;
  366. y_ptr[j+1] += *(aj+lda) * xtemp0 + *(aj+lda+1) * xtemp1 ;
  367. y_ptr[j+2] += *(aj+lda2) * xtemp0 + *(aj+lda2+1) * xtemp1 ;
  368. y_ptr[j+3] += *(aj+lda3) * xtemp0 + *(aj+lda3+1) * xtemp1 ;
  369. aj += lda4;
  370. }
  371. for ( ; j< n ; j++ )
  372. {
  373. y_ptr[j] += *aj * xtemp0 + *(aj+1) * xtemp1 ;
  374. aj += lda;
  375. }
  376. }
  377. else
  378. {
  379. for ( j=0; j<n; j++ )
  380. {
  381. *y_ptr += *aj * xtemp0 + *(aj+1) * xtemp1 ;
  382. y_ptr += inc_y;
  383. aj += lda;
  384. }
  385. }
  386. }
  387. return(0);
  388. }
  389. FLOAT xtemp = *x_ptr * alpha;
  390. FLOAT *aj = a_ptr;
  391. y_ptr = y;
  392. if ( lda == 1 && inc_y == 1 )
  393. {
  394. for ( j=0; j< ( n & -4) ; j+=4 )
  395. {
  396. y_ptr[j] += aj[j] * xtemp;
  397. y_ptr[j+1] += aj[j+1] * xtemp;
  398. y_ptr[j+2] += aj[j+2] * xtemp;
  399. y_ptr[j+3] += aj[j+3] * xtemp;
  400. }
  401. for ( ; j<n ; j++ )
  402. {
  403. y_ptr[j] += aj[j] * xtemp;
  404. }
  405. }
  406. else
  407. {
  408. if ( inc_y == 1 )
  409. {
  410. BLASLONG register lda2 = lda << 1;
  411. BLASLONG register lda4 = lda << 2;
  412. BLASLONG register lda3 = lda2 + lda;
  413. for ( j=0; j< ( n & -4 ); j+=4 )
  414. {
  415. y_ptr[j] += *aj * xtemp;
  416. y_ptr[j+1] += *(aj+lda) * xtemp;
  417. y_ptr[j+2] += *(aj+lda2) * xtemp;
  418. y_ptr[j+3] += *(aj+lda3) * xtemp;
  419. aj += lda4 ;
  420. }
  421. for ( ; j<n; j++ )
  422. {
  423. y_ptr[j] += *aj * xtemp;
  424. aj += lda;
  425. }
  426. }
  427. else
  428. {
  429. for ( j=0; j<n; j++ )
  430. {
  431. *y_ptr += *aj * xtemp;
  432. y_ptr += inc_y;
  433. aj += lda;
  434. }
  435. }
  436. }
  437. return(0);
  438. }