You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlatps.f 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795
  1. *> \brief \b DLATPS solves a triangular system of equations with the matrix held in packed storage.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLATPS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatps.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatps.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatps.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
  22. * CNORM, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORMIN, TRANS, UPLO
  26. * INTEGER INFO, N
  27. * DOUBLE PRECISION SCALE
  28. * ..
  29. * .. Array Arguments ..
  30. * DOUBLE PRECISION AP( * ), CNORM( * ), X( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DLATPS solves one of the triangular systems
  40. *>
  41. *> A *x = s*b or A**T*x = s*b
  42. *>
  43. *> with scaling to prevent overflow, where A is an upper or lower
  44. *> triangular matrix stored in packed form. Here A**T denotes the
  45. *> transpose of A, x and b are n-element vectors, and s is a scaling
  46. *> factor, usually less than or equal to 1, chosen so that the
  47. *> components of x will be less than the overflow threshold. If the
  48. *> unscaled problem will not cause overflow, the Level 2 BLAS routine
  49. *> DTPSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
  50. *> then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] UPLO
  57. *> \verbatim
  58. *> UPLO is CHARACTER*1
  59. *> Specifies whether the matrix A is upper or lower triangular.
  60. *> = 'U': Upper triangular
  61. *> = 'L': Lower triangular
  62. *> \endverbatim
  63. *>
  64. *> \param[in] TRANS
  65. *> \verbatim
  66. *> TRANS is CHARACTER*1
  67. *> Specifies the operation applied to A.
  68. *> = 'N': Solve A * x = s*b (No transpose)
  69. *> = 'T': Solve A**T* x = s*b (Transpose)
  70. *> = 'C': Solve A**T* x = s*b (Conjugate transpose = Transpose)
  71. *> \endverbatim
  72. *>
  73. *> \param[in] DIAG
  74. *> \verbatim
  75. *> DIAG is CHARACTER*1
  76. *> Specifies whether or not the matrix A is unit triangular.
  77. *> = 'N': Non-unit triangular
  78. *> = 'U': Unit triangular
  79. *> \endverbatim
  80. *>
  81. *> \param[in] NORMIN
  82. *> \verbatim
  83. *> NORMIN is CHARACTER*1
  84. *> Specifies whether CNORM has been set or not.
  85. *> = 'Y': CNORM contains the column norms on entry
  86. *> = 'N': CNORM is not set on entry. On exit, the norms will
  87. *> be computed and stored in CNORM.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] N
  91. *> \verbatim
  92. *> N is INTEGER
  93. *> The order of the matrix A. N >= 0.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] AP
  97. *> \verbatim
  98. *> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
  99. *> The upper or lower triangular matrix A, packed columnwise in
  100. *> a linear array. The j-th column of A is stored in the array
  101. *> AP as follows:
  102. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  103. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  104. *> \endverbatim
  105. *>
  106. *> \param[in,out] X
  107. *> \verbatim
  108. *> X is DOUBLE PRECISION array, dimension (N)
  109. *> On entry, the right hand side b of the triangular system.
  110. *> On exit, X is overwritten by the solution vector x.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] SCALE
  114. *> \verbatim
  115. *> SCALE is DOUBLE PRECISION
  116. *> The scaling factor s for the triangular system
  117. *> A * x = s*b or A**T* x = s*b.
  118. *> If SCALE = 0, the matrix A is singular or badly scaled, and
  119. *> the vector x is an exact or approximate solution to A*x = 0.
  120. *> \endverbatim
  121. *>
  122. *> \param[in,out] CNORM
  123. *> \verbatim
  124. *> CNORM is DOUBLE PRECISION array, dimension (N)
  125. *>
  126. *> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  127. *> contains the norm of the off-diagonal part of the j-th column
  128. *> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
  129. *> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  130. *> must be greater than or equal to the 1-norm.
  131. *>
  132. *> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  133. *> returns the 1-norm of the offdiagonal part of the j-th column
  134. *> of A.
  135. *> \endverbatim
  136. *>
  137. *> \param[out] INFO
  138. *> \verbatim
  139. *> INFO is INTEGER
  140. *> = 0: successful exit
  141. *> < 0: if INFO = -k, the k-th argument had an illegal value
  142. *> \endverbatim
  143. *
  144. * Authors:
  145. * ========
  146. *
  147. *> \author Univ. of Tennessee
  148. *> \author Univ. of California Berkeley
  149. *> \author Univ. of Colorado Denver
  150. *> \author NAG Ltd.
  151. *
  152. *> \date December 2016
  153. *
  154. *> \ingroup doubleOTHERauxiliary
  155. *
  156. *> \par Further Details:
  157. * =====================
  158. *>
  159. *> \verbatim
  160. *>
  161. *> A rough bound on x is computed; if that is less than overflow, DTPSV
  162. *> is called, otherwise, specific code is used which checks for possible
  163. *> overflow or divide-by-zero at every operation.
  164. *>
  165. *> A columnwise scheme is used for solving A*x = b. The basic algorithm
  166. *> if A is lower triangular is
  167. *>
  168. *> x[1:n] := b[1:n]
  169. *> for j = 1, ..., n
  170. *> x(j) := x(j) / A(j,j)
  171. *> x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  172. *> end
  173. *>
  174. *> Define bounds on the components of x after j iterations of the loop:
  175. *> M(j) = bound on x[1:j]
  176. *> G(j) = bound on x[j+1:n]
  177. *> Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  178. *>
  179. *> Then for iteration j+1 we have
  180. *> M(j+1) <= G(j) / | A(j+1,j+1) |
  181. *> G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  182. *> <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  183. *>
  184. *> where CNORM(j+1) is greater than or equal to the infinity-norm of
  185. *> column j+1 of A, not counting the diagonal. Hence
  186. *>
  187. *> G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  188. *> 1<=i<=j
  189. *> and
  190. *>
  191. *> |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  192. *> 1<=i< j
  193. *>
  194. *> Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTPSV if the
  195. *> reciprocal of the largest M(j), j=1,..,n, is larger than
  196. *> max(underflow, 1/overflow).
  197. *>
  198. *> The bound on x(j) is also used to determine when a step in the
  199. *> columnwise method can be performed without fear of overflow. If
  200. *> the computed bound is greater than a large constant, x is scaled to
  201. *> prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  202. *> 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  203. *>
  204. *> Similarly, a row-wise scheme is used to solve A**T*x = b. The basic
  205. *> algorithm for A upper triangular is
  206. *>
  207. *> for j = 1, ..., n
  208. *> x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
  209. *> end
  210. *>
  211. *> We simultaneously compute two bounds
  212. *> G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
  213. *> M(j) = bound on x(i), 1<=i<=j
  214. *>
  215. *> The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  216. *> add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  217. *> Then the bound on x(j) is
  218. *>
  219. *> M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  220. *>
  221. *> <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  222. *> 1<=i<=j
  223. *>
  224. *> and we can safely call DTPSV if 1/M(n) and 1/G(n) are both greater
  225. *> than max(underflow, 1/overflow).
  226. *> \endverbatim
  227. *>
  228. * =====================================================================
  229. SUBROUTINE DLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
  230. $ CNORM, INFO )
  231. *
  232. * -- LAPACK auxiliary routine (version 3.7.0) --
  233. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  234. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  235. * December 2016
  236. *
  237. * .. Scalar Arguments ..
  238. CHARACTER DIAG, NORMIN, TRANS, UPLO
  239. INTEGER INFO, N
  240. DOUBLE PRECISION SCALE
  241. * ..
  242. * .. Array Arguments ..
  243. DOUBLE PRECISION AP( * ), CNORM( * ), X( * )
  244. * ..
  245. *
  246. * =====================================================================
  247. *
  248. * .. Parameters ..
  249. DOUBLE PRECISION ZERO, HALF, ONE
  250. PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
  251. * ..
  252. * .. Local Scalars ..
  253. LOGICAL NOTRAN, NOUNIT, UPPER
  254. INTEGER I, IMAX, IP, J, JFIRST, JINC, JLAST, JLEN
  255. DOUBLE PRECISION BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
  256. $ TMAX, TSCAL, USCAL, XBND, XJ, XMAX
  257. * ..
  258. * .. External Functions ..
  259. LOGICAL LSAME
  260. INTEGER IDAMAX
  261. DOUBLE PRECISION DASUM, DDOT, DLAMCH
  262. EXTERNAL LSAME, IDAMAX, DASUM, DDOT, DLAMCH
  263. * ..
  264. * .. External Subroutines ..
  265. EXTERNAL DAXPY, DSCAL, DTPSV, XERBLA
  266. * ..
  267. * .. Intrinsic Functions ..
  268. INTRINSIC ABS, MAX, MIN
  269. * ..
  270. * .. Executable Statements ..
  271. *
  272. INFO = 0
  273. UPPER = LSAME( UPLO, 'U' )
  274. NOTRAN = LSAME( TRANS, 'N' )
  275. NOUNIT = LSAME( DIAG, 'N' )
  276. *
  277. * Test the input parameters.
  278. *
  279. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  280. INFO = -1
  281. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  282. $ LSAME( TRANS, 'C' ) ) THEN
  283. INFO = -2
  284. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  285. INFO = -3
  286. ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  287. $ LSAME( NORMIN, 'N' ) ) THEN
  288. INFO = -4
  289. ELSE IF( N.LT.0 ) THEN
  290. INFO = -5
  291. END IF
  292. IF( INFO.NE.0 ) THEN
  293. CALL XERBLA( 'DLATPS', -INFO )
  294. RETURN
  295. END IF
  296. *
  297. * Quick return if possible
  298. *
  299. IF( N.EQ.0 )
  300. $ RETURN
  301. *
  302. * Determine machine dependent parameters to control overflow.
  303. *
  304. SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
  305. BIGNUM = ONE / SMLNUM
  306. SCALE = ONE
  307. *
  308. IF( LSAME( NORMIN, 'N' ) ) THEN
  309. *
  310. * Compute the 1-norm of each column, not including the diagonal.
  311. *
  312. IF( UPPER ) THEN
  313. *
  314. * A is upper triangular.
  315. *
  316. IP = 1
  317. DO 10 J = 1, N
  318. CNORM( J ) = DASUM( J-1, AP( IP ), 1 )
  319. IP = IP + J
  320. 10 CONTINUE
  321. ELSE
  322. *
  323. * A is lower triangular.
  324. *
  325. IP = 1
  326. DO 20 J = 1, N - 1
  327. CNORM( J ) = DASUM( N-J, AP( IP+1 ), 1 )
  328. IP = IP + N - J + 1
  329. 20 CONTINUE
  330. CNORM( N ) = ZERO
  331. END IF
  332. END IF
  333. *
  334. * Scale the column norms by TSCAL if the maximum element in CNORM is
  335. * greater than BIGNUM.
  336. *
  337. IMAX = IDAMAX( N, CNORM, 1 )
  338. TMAX = CNORM( IMAX )
  339. IF( TMAX.LE.BIGNUM ) THEN
  340. TSCAL = ONE
  341. ELSE
  342. TSCAL = ONE / ( SMLNUM*TMAX )
  343. CALL DSCAL( N, TSCAL, CNORM, 1 )
  344. END IF
  345. *
  346. * Compute a bound on the computed solution vector to see if the
  347. * Level 2 BLAS routine DTPSV can be used.
  348. *
  349. J = IDAMAX( N, X, 1 )
  350. XMAX = ABS( X( J ) )
  351. XBND = XMAX
  352. IF( NOTRAN ) THEN
  353. *
  354. * Compute the growth in A * x = b.
  355. *
  356. IF( UPPER ) THEN
  357. JFIRST = N
  358. JLAST = 1
  359. JINC = -1
  360. ELSE
  361. JFIRST = 1
  362. JLAST = N
  363. JINC = 1
  364. END IF
  365. *
  366. IF( TSCAL.NE.ONE ) THEN
  367. GROW = ZERO
  368. GO TO 50
  369. END IF
  370. *
  371. IF( NOUNIT ) THEN
  372. *
  373. * A is non-unit triangular.
  374. *
  375. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  376. * Initially, G(0) = max{x(i), i=1,...,n}.
  377. *
  378. GROW = ONE / MAX( XBND, SMLNUM )
  379. XBND = GROW
  380. IP = JFIRST*( JFIRST+1 ) / 2
  381. JLEN = N
  382. DO 30 J = JFIRST, JLAST, JINC
  383. *
  384. * Exit the loop if the growth factor is too small.
  385. *
  386. IF( GROW.LE.SMLNUM )
  387. $ GO TO 50
  388. *
  389. * M(j) = G(j-1) / abs(A(j,j))
  390. *
  391. TJJ = ABS( AP( IP ) )
  392. XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  393. IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  394. *
  395. * G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  396. *
  397. GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  398. ELSE
  399. *
  400. * G(j) could overflow, set GROW to 0.
  401. *
  402. GROW = ZERO
  403. END IF
  404. IP = IP + JINC*JLEN
  405. JLEN = JLEN - 1
  406. 30 CONTINUE
  407. GROW = XBND
  408. ELSE
  409. *
  410. * A is unit triangular.
  411. *
  412. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  413. *
  414. GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  415. DO 40 J = JFIRST, JLAST, JINC
  416. *
  417. * Exit the loop if the growth factor is too small.
  418. *
  419. IF( GROW.LE.SMLNUM )
  420. $ GO TO 50
  421. *
  422. * G(j) = G(j-1)*( 1 + CNORM(j) )
  423. *
  424. GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  425. 40 CONTINUE
  426. END IF
  427. 50 CONTINUE
  428. *
  429. ELSE
  430. *
  431. * Compute the growth in A**T * x = b.
  432. *
  433. IF( UPPER ) THEN
  434. JFIRST = 1
  435. JLAST = N
  436. JINC = 1
  437. ELSE
  438. JFIRST = N
  439. JLAST = 1
  440. JINC = -1
  441. END IF
  442. *
  443. IF( TSCAL.NE.ONE ) THEN
  444. GROW = ZERO
  445. GO TO 80
  446. END IF
  447. *
  448. IF( NOUNIT ) THEN
  449. *
  450. * A is non-unit triangular.
  451. *
  452. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  453. * Initially, M(0) = max{x(i), i=1,...,n}.
  454. *
  455. GROW = ONE / MAX( XBND, SMLNUM )
  456. XBND = GROW
  457. IP = JFIRST*( JFIRST+1 ) / 2
  458. JLEN = 1
  459. DO 60 J = JFIRST, JLAST, JINC
  460. *
  461. * Exit the loop if the growth factor is too small.
  462. *
  463. IF( GROW.LE.SMLNUM )
  464. $ GO TO 80
  465. *
  466. * G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  467. *
  468. XJ = ONE + CNORM( J )
  469. GROW = MIN( GROW, XBND / XJ )
  470. *
  471. * M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  472. *
  473. TJJ = ABS( AP( IP ) )
  474. IF( XJ.GT.TJJ )
  475. $ XBND = XBND*( TJJ / XJ )
  476. JLEN = JLEN + 1
  477. IP = IP + JINC*JLEN
  478. 60 CONTINUE
  479. GROW = MIN( GROW, XBND )
  480. ELSE
  481. *
  482. * A is unit triangular.
  483. *
  484. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  485. *
  486. GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  487. DO 70 J = JFIRST, JLAST, JINC
  488. *
  489. * Exit the loop if the growth factor is too small.
  490. *
  491. IF( GROW.LE.SMLNUM )
  492. $ GO TO 80
  493. *
  494. * G(j) = ( 1 + CNORM(j) )*G(j-1)
  495. *
  496. XJ = ONE + CNORM( J )
  497. GROW = GROW / XJ
  498. 70 CONTINUE
  499. END IF
  500. 80 CONTINUE
  501. END IF
  502. *
  503. IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  504. *
  505. * Use the Level 2 BLAS solve if the reciprocal of the bound on
  506. * elements of X is not too small.
  507. *
  508. CALL DTPSV( UPLO, TRANS, DIAG, N, AP, X, 1 )
  509. ELSE
  510. *
  511. * Use a Level 1 BLAS solve, scaling intermediate results.
  512. *
  513. IF( XMAX.GT.BIGNUM ) THEN
  514. *
  515. * Scale X so that its components are less than or equal to
  516. * BIGNUM in absolute value.
  517. *
  518. SCALE = BIGNUM / XMAX
  519. CALL DSCAL( N, SCALE, X, 1 )
  520. XMAX = BIGNUM
  521. END IF
  522. *
  523. IF( NOTRAN ) THEN
  524. *
  525. * Solve A * x = b
  526. *
  527. IP = JFIRST*( JFIRST+1 ) / 2
  528. DO 110 J = JFIRST, JLAST, JINC
  529. *
  530. * Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  531. *
  532. XJ = ABS( X( J ) )
  533. IF( NOUNIT ) THEN
  534. TJJS = AP( IP )*TSCAL
  535. ELSE
  536. TJJS = TSCAL
  537. IF( TSCAL.EQ.ONE )
  538. $ GO TO 100
  539. END IF
  540. TJJ = ABS( TJJS )
  541. IF( TJJ.GT.SMLNUM ) THEN
  542. *
  543. * abs(A(j,j)) > SMLNUM:
  544. *
  545. IF( TJJ.LT.ONE ) THEN
  546. IF( XJ.GT.TJJ*BIGNUM ) THEN
  547. *
  548. * Scale x by 1/b(j).
  549. *
  550. REC = ONE / XJ
  551. CALL DSCAL( N, REC, X, 1 )
  552. SCALE = SCALE*REC
  553. XMAX = XMAX*REC
  554. END IF
  555. END IF
  556. X( J ) = X( J ) / TJJS
  557. XJ = ABS( X( J ) )
  558. ELSE IF( TJJ.GT.ZERO ) THEN
  559. *
  560. * 0 < abs(A(j,j)) <= SMLNUM:
  561. *
  562. IF( XJ.GT.TJJ*BIGNUM ) THEN
  563. *
  564. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  565. * to avoid overflow when dividing by A(j,j).
  566. *
  567. REC = ( TJJ*BIGNUM ) / XJ
  568. IF( CNORM( J ).GT.ONE ) THEN
  569. *
  570. * Scale by 1/CNORM(j) to avoid overflow when
  571. * multiplying x(j) times column j.
  572. *
  573. REC = REC / CNORM( J )
  574. END IF
  575. CALL DSCAL( N, REC, X, 1 )
  576. SCALE = SCALE*REC
  577. XMAX = XMAX*REC
  578. END IF
  579. X( J ) = X( J ) / TJJS
  580. XJ = ABS( X( J ) )
  581. ELSE
  582. *
  583. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  584. * scale = 0, and compute a solution to A*x = 0.
  585. *
  586. DO 90 I = 1, N
  587. X( I ) = ZERO
  588. 90 CONTINUE
  589. X( J ) = ONE
  590. XJ = ONE
  591. SCALE = ZERO
  592. XMAX = ZERO
  593. END IF
  594. 100 CONTINUE
  595. *
  596. * Scale x if necessary to avoid overflow when adding a
  597. * multiple of column j of A.
  598. *
  599. IF( XJ.GT.ONE ) THEN
  600. REC = ONE / XJ
  601. IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  602. *
  603. * Scale x by 1/(2*abs(x(j))).
  604. *
  605. REC = REC*HALF
  606. CALL DSCAL( N, REC, X, 1 )
  607. SCALE = SCALE*REC
  608. END IF
  609. ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  610. *
  611. * Scale x by 1/2.
  612. *
  613. CALL DSCAL( N, HALF, X, 1 )
  614. SCALE = SCALE*HALF
  615. END IF
  616. *
  617. IF( UPPER ) THEN
  618. IF( J.GT.1 ) THEN
  619. *
  620. * Compute the update
  621. * x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
  622. *
  623. CALL DAXPY( J-1, -X( J )*TSCAL, AP( IP-J+1 ), 1, X,
  624. $ 1 )
  625. I = IDAMAX( J-1, X, 1 )
  626. XMAX = ABS( X( I ) )
  627. END IF
  628. IP = IP - J
  629. ELSE
  630. IF( J.LT.N ) THEN
  631. *
  632. * Compute the update
  633. * x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
  634. *
  635. CALL DAXPY( N-J, -X( J )*TSCAL, AP( IP+1 ), 1,
  636. $ X( J+1 ), 1 )
  637. I = J + IDAMAX( N-J, X( J+1 ), 1 )
  638. XMAX = ABS( X( I ) )
  639. END IF
  640. IP = IP + N - J + 1
  641. END IF
  642. 110 CONTINUE
  643. *
  644. ELSE
  645. *
  646. * Solve A**T * x = b
  647. *
  648. IP = JFIRST*( JFIRST+1 ) / 2
  649. JLEN = 1
  650. DO 160 J = JFIRST, JLAST, JINC
  651. *
  652. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  653. * k<>j
  654. *
  655. XJ = ABS( X( J ) )
  656. USCAL = TSCAL
  657. REC = ONE / MAX( XMAX, ONE )
  658. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  659. *
  660. * If x(j) could overflow, scale x by 1/(2*XMAX).
  661. *
  662. REC = REC*HALF
  663. IF( NOUNIT ) THEN
  664. TJJS = AP( IP )*TSCAL
  665. ELSE
  666. TJJS = TSCAL
  667. END IF
  668. TJJ = ABS( TJJS )
  669. IF( TJJ.GT.ONE ) THEN
  670. *
  671. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  672. *
  673. REC = MIN( ONE, REC*TJJ )
  674. USCAL = USCAL / TJJS
  675. END IF
  676. IF( REC.LT.ONE ) THEN
  677. CALL DSCAL( N, REC, X, 1 )
  678. SCALE = SCALE*REC
  679. XMAX = XMAX*REC
  680. END IF
  681. END IF
  682. *
  683. SUMJ = ZERO
  684. IF( USCAL.EQ.ONE ) THEN
  685. *
  686. * If the scaling needed for A in the dot product is 1,
  687. * call DDOT to perform the dot product.
  688. *
  689. IF( UPPER ) THEN
  690. SUMJ = DDOT( J-1, AP( IP-J+1 ), 1, X, 1 )
  691. ELSE IF( J.LT.N ) THEN
  692. SUMJ = DDOT( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
  693. END IF
  694. ELSE
  695. *
  696. * Otherwise, use in-line code for the dot product.
  697. *
  698. IF( UPPER ) THEN
  699. DO 120 I = 1, J - 1
  700. SUMJ = SUMJ + ( AP( IP-J+I )*USCAL )*X( I )
  701. 120 CONTINUE
  702. ELSE IF( J.LT.N ) THEN
  703. DO 130 I = 1, N - J
  704. SUMJ = SUMJ + ( AP( IP+I )*USCAL )*X( J+I )
  705. 130 CONTINUE
  706. END IF
  707. END IF
  708. *
  709. IF( USCAL.EQ.TSCAL ) THEN
  710. *
  711. * Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
  712. * was not used to scale the dotproduct.
  713. *
  714. X( J ) = X( J ) - SUMJ
  715. XJ = ABS( X( J ) )
  716. IF( NOUNIT ) THEN
  717. *
  718. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  719. *
  720. TJJS = AP( IP )*TSCAL
  721. ELSE
  722. TJJS = TSCAL
  723. IF( TSCAL.EQ.ONE )
  724. $ GO TO 150
  725. END IF
  726. TJJ = ABS( TJJS )
  727. IF( TJJ.GT.SMLNUM ) THEN
  728. *
  729. * abs(A(j,j)) > SMLNUM:
  730. *
  731. IF( TJJ.LT.ONE ) THEN
  732. IF( XJ.GT.TJJ*BIGNUM ) THEN
  733. *
  734. * Scale X by 1/abs(x(j)).
  735. *
  736. REC = ONE / XJ
  737. CALL DSCAL( N, REC, X, 1 )
  738. SCALE = SCALE*REC
  739. XMAX = XMAX*REC
  740. END IF
  741. END IF
  742. X( J ) = X( J ) / TJJS
  743. ELSE IF( TJJ.GT.ZERO ) THEN
  744. *
  745. * 0 < abs(A(j,j)) <= SMLNUM:
  746. *
  747. IF( XJ.GT.TJJ*BIGNUM ) THEN
  748. *
  749. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  750. *
  751. REC = ( TJJ*BIGNUM ) / XJ
  752. CALL DSCAL( N, REC, X, 1 )
  753. SCALE = SCALE*REC
  754. XMAX = XMAX*REC
  755. END IF
  756. X( J ) = X( J ) / TJJS
  757. ELSE
  758. *
  759. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  760. * scale = 0, and compute a solution to A**T*x = 0.
  761. *
  762. DO 140 I = 1, N
  763. X( I ) = ZERO
  764. 140 CONTINUE
  765. X( J ) = ONE
  766. SCALE = ZERO
  767. XMAX = ZERO
  768. END IF
  769. 150 CONTINUE
  770. ELSE
  771. *
  772. * Compute x(j) := x(j) / A(j,j) - sumj if the dot
  773. * product has already been divided by 1/A(j,j).
  774. *
  775. X( J ) = X( J ) / TJJS - SUMJ
  776. END IF
  777. XMAX = MAX( XMAX, ABS( X( J ) ) )
  778. JLEN = JLEN + 1
  779. IP = IP + JINC*JLEN
  780. 160 CONTINUE
  781. END IF
  782. SCALE = SCALE / TSCAL
  783. END IF
  784. *
  785. * Scale the column norms by 1/TSCAL for return.
  786. *
  787. IF( TSCAL.NE.ONE ) THEN
  788. CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
  789. END IF
  790. *
  791. RETURN
  792. *
  793. * End of DLATPS
  794. *
  795. END