You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztsqr01.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462
  1. *> \brief \b ZTSQR01
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZTSQR01(TSSW, M,N, MB, NB, RESULT)
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER M, N, MB
  15. * .. Return values ..
  16. * DOUBLE PRECISION RESULT(6)
  17. *
  18. *
  19. *> \par Purpose:
  20. * =============
  21. *>
  22. *> \verbatim
  23. *>
  24. *> ZTSQR01 tests ZGEQR , ZGELQ, ZGEMLQ and ZGEMQR.
  25. *> \endverbatim
  26. *
  27. * Arguments:
  28. * ==========
  29. *
  30. *> \param[in] TSSW
  31. *> \verbatim
  32. *> TSSW is CHARACTER
  33. *> 'TS' for testing tall skinny QR
  34. *> and anything else for testing short wide LQ
  35. *> \endverbatim
  36. *> \param[in] M
  37. *> \verbatim
  38. *> M is INTEGER
  39. *> Number of rows in test matrix.
  40. *> \endverbatim
  41. *>
  42. *> \param[in] N
  43. *> \verbatim
  44. *> N is INTEGER
  45. *> Number of columns in test matrix.
  46. *> \endverbatim
  47. *> \param[in] MB
  48. *> \verbatim
  49. *> MB is INTEGER
  50. *> Number of row in row block in test matrix.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] NB
  54. *> \verbatim
  55. *> NB is INTEGER
  56. *> Number of columns in column block test matrix.
  57. *> \endverbatim
  58. *>
  59. *> \param[out] RESULT
  60. *> \verbatim
  61. *> RESULT is DOUBLE PRECISION array, dimension (6)
  62. *> Results of each of the six tests below.
  63. *>
  64. *> RESULT(1) = | A - Q R | or | A - L Q |
  65. *> RESULT(2) = | I - Q^H Q | or | I - Q Q^H |
  66. *> RESULT(3) = | Q C - Q C |
  67. *> RESULT(4) = | Q^H C - Q^H C |
  68. *> RESULT(5) = | C Q - C Q |
  69. *> RESULT(6) = | C Q^H - C Q^H |
  70. *> \endverbatim
  71. *
  72. * Authors:
  73. * ========
  74. *
  75. *> \author Univ. of Tennessee
  76. *> \author Univ. of California Berkeley
  77. *> \author Univ. of Colorado Denver
  78. *> \author NAG Ltd.
  79. *
  80. *> \date April 2012
  81. *
  82. * =====================================================================
  83. SUBROUTINE ZTSQR01(TSSW, M, N, MB, NB, RESULT)
  84. IMPLICIT NONE
  85. *
  86. * -- LAPACK test routine (version 3.7.0) --
  87. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  88. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  89. * April 2012
  90. *
  91. * .. Scalar Arguments ..
  92. CHARACTER TSSW
  93. INTEGER M, N, MB, NB
  94. * .. Return values ..
  95. DOUBLE PRECISION RESULT(6)
  96. *
  97. * =====================================================================
  98. *
  99. * ..
  100. * .. Local allocatable arrays
  101. COMPLEX*16, ALLOCATABLE :: AF(:,:), Q(:,:),
  102. $ R(:,:), RWORK(:), WORK( : ), T(:),
  103. $ CF(:,:), DF(:,:), A(:,:), C(:,:), D(:,:), LQ(:,:)
  104. *
  105. * .. Parameters ..
  106. DOUBLE PRECISION ZERO
  107. COMPLEX*16 ONE, CZERO
  108. PARAMETER( ZERO = 0.0, ONE = (1.0,0.0), CZERO=(0.0,0.0) )
  109. * ..
  110. * .. Local Scalars ..
  111. LOGICAL TESTZEROS, TS
  112. INTEGER INFO, J, K, L, LWORK, TSIZE, MNB
  113. DOUBLE PRECISION ANORM, EPS, RESID, CNORM, DNORM
  114. * ..
  115. * .. Local Arrays ..
  116. INTEGER ISEED( 4 )
  117. COMPLEX*16 TQUERY( 5 ), WORKQUERY
  118. * ..
  119. * .. External Functions ..
  120. DOUBLE PRECISION DLAMCH, ZLANGE, ZLANSY
  121. LOGICAL LSAME
  122. INTEGER ILAENV
  123. EXTERNAL DLAMCH, ZLANGE, ZLANSY, LSAME, ILAENV
  124. * ..
  125. * .. Intrinsic Functions ..
  126. INTRINSIC MAX, MIN
  127. * .. Scalars in Common ..
  128. CHARACTER*32 srnamt
  129. * ..
  130. * .. Common blocks ..
  131. COMMON / srnamc / srnamt
  132. * ..
  133. * .. Data statements ..
  134. DATA ISEED / 1988, 1989, 1990, 1991 /
  135. *
  136. * TEST TALL SKINNY OR SHORT WIDE
  137. *
  138. TS = LSAME(TSSW, 'TS')
  139. *
  140. * TEST MATRICES WITH HALF OF MATRIX BEING ZEROS
  141. *
  142. TESTZEROS = .FALSE.
  143. *
  144. EPS = DLAMCH( 'Epsilon' )
  145. K = MIN(M,N)
  146. L = MAX(M,N,1)
  147. MNB = MAX ( MB, NB)
  148. LWORK = MAX(3,L)*MNB
  149. *
  150. * Dynamically allocate local arrays
  151. *
  152. ALLOCATE ( A(M,N), AF(M,N), Q(L,L), R(M,L), RWORK(L),
  153. $ C(M,N), CF(M,N),
  154. $ D(N,M), DF(N,M), LQ(L,N) )
  155. *
  156. * Put random numbers into A and copy to AF
  157. *
  158. DO J=1,N
  159. CALL ZLARNV( 2, ISEED, M, A( 1, J ) )
  160. END DO
  161. IF (TESTZEROS) THEN
  162. IF (M.GE.4) THEN
  163. DO J=1,N
  164. CALL ZLARNV( 2, ISEED, M/2, A( M/4, J ) )
  165. END DO
  166. END IF
  167. END IF
  168. CALL ZLACPY( 'Full', M, N, A, M, AF, M )
  169. *
  170. IF (TS) THEN
  171. *
  172. * Factor the matrix A in the array AF.
  173. *
  174. CALL ZGEQR( M, N, AF, M, TQUERY, -1, WORKQUERY, -1, INFO )
  175. TSIZE = INT( TQUERY( 1 ) )
  176. LWORK = INT( WORKQUERY )
  177. CALL ZGEMQR( 'L', 'N', M, M, K, AF, M, TQUERY, TSIZE, CF, M,
  178. $ WORKQUERY, -1, INFO)
  179. LWORK = MAX( LWORK, INT( WORKQUERY ) )
  180. CALL ZGEMQR( 'L', 'N', M, N, K, AF, M, TQUERY, TSIZE, CF, M,
  181. $ WORKQUERY, -1, INFO)
  182. LWORK = MAX( LWORK, INT( WORKQUERY ) )
  183. CALL ZGEMQR( 'L', 'C', M, N, K, AF, M, TQUERY, TSIZE, CF, M,
  184. $ WORKQUERY, -1, INFO)
  185. LWORK = MAX( LWORK, INT( WORKQUERY ) )
  186. CALL ZGEMQR( 'R', 'N', N, M, K, AF, M, TQUERY, TSIZE, DF, N,
  187. $ WORKQUERY, -1, INFO)
  188. LWORK = MAX( LWORK, INT( WORKQUERY ) )
  189. CALL ZGEMQR( 'R', 'C', N, M, K, AF, M, TQUERY, TSIZE, DF, N,
  190. $ WORKQUERY, -1, INFO)
  191. LWORK = MAX( LWORK, INT( WORKQUERY ) )
  192. ALLOCATE ( T( TSIZE ) )
  193. ALLOCATE ( WORK( LWORK ) )
  194. srnamt = 'ZGEQR'
  195. CALL ZGEQR( M, N, AF, M, T, TSIZE, WORK, LWORK, INFO )
  196. *
  197. * Generate the m-by-m matrix Q
  198. *
  199. CALL ZLASET( 'Full', M, M, CZERO, ONE, Q, M )
  200. srnamt = 'ZGEMQR'
  201. CALL ZGEMQR( 'L', 'N', M, M, K, AF, M, T, TSIZE, Q, M,
  202. $ WORK, LWORK, INFO )
  203. *
  204. * Copy R
  205. *
  206. CALL ZLASET( 'Full', M, N, CZERO, CZERO, R, M )
  207. CALL ZLACPY( 'Upper', M, N, AF, M, R, M )
  208. *
  209. * Compute |R - Q'*A| / |A| and store in RESULT(1)
  210. *
  211. CALL ZGEMM( 'C', 'N', M, N, M, -ONE, Q, M, A, M, ONE, R, M )
  212. ANORM = ZLANGE( '1', M, N, A, M, RWORK )
  213. RESID = ZLANGE( '1', M, N, R, M, RWORK )
  214. IF( ANORM.GT.ZERO ) THEN
  215. RESULT( 1 ) = RESID / (EPS*MAX(1,M)*ANORM)
  216. ELSE
  217. RESULT( 1 ) = ZERO
  218. END IF
  219. *
  220. * Compute |I - Q'*Q| and store in RESULT(2)
  221. *
  222. CALL ZLASET( 'Full', M, M, CZERO, ONE, R, M )
  223. CALL ZHERK( 'U', 'C', M, M, DREAL(-ONE), Q, M, DREAL(ONE), R, M )
  224. RESID = ZLANSY( '1', 'Upper', M, R, M, RWORK )
  225. RESULT( 2 ) = RESID / (EPS*MAX(1,M))
  226. *
  227. * Generate random m-by-n matrix C and a copy CF
  228. *
  229. DO J=1,N
  230. CALL ZLARNV( 2, ISEED, M, C( 1, J ) )
  231. END DO
  232. CNORM = ZLANGE( '1', M, N, C, M, RWORK)
  233. CALL ZLACPY( 'Full', M, N, C, M, CF, M )
  234. *
  235. * Apply Q to C as Q*C
  236. *
  237. srnamt = 'ZGEMQR'
  238. CALL ZGEMQR( 'L', 'N', M, N, K, AF, M, T, TSIZE, CF, M,
  239. $ WORK, LWORK, INFO)
  240. *
  241. * Compute |Q*C - Q*C| / |C|
  242. *
  243. CALL ZGEMM( 'N', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M )
  244. RESID = ZLANGE( '1', M, N, CF, M, RWORK )
  245. IF( CNORM.GT.ZERO ) THEN
  246. RESULT( 3 ) = RESID / (EPS*MAX(1,M)*CNORM)
  247. ELSE
  248. RESULT( 3 ) = ZERO
  249. END IF
  250. *
  251. * Copy C into CF again
  252. *
  253. CALL ZLACPY( 'Full', M, N, C, M, CF, M )
  254. *
  255. * Apply Q to C as QT*C
  256. *
  257. srnamt = 'ZGEMQR'
  258. CALL ZGEMQR( 'L', 'C', M, N, K, AF, M, T, TSIZE, CF, M,
  259. $ WORK, LWORK, INFO)
  260. *
  261. * Compute |QT*C - QT*C| / |C|
  262. *
  263. CALL ZGEMM( 'C', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M )
  264. RESID = ZLANGE( '1', M, N, CF, M, RWORK )
  265. IF( CNORM.GT.ZERO ) THEN
  266. RESULT( 4 ) = RESID / (EPS*MAX(1,M)*CNORM)
  267. ELSE
  268. RESULT( 4 ) = ZERO
  269. END IF
  270. *
  271. * Generate random n-by-m matrix D and a copy DF
  272. *
  273. DO J=1,M
  274. CALL ZLARNV( 2, ISEED, N, D( 1, J ) )
  275. END DO
  276. DNORM = ZLANGE( '1', N, M, D, N, RWORK)
  277. CALL ZLACPY( 'Full', N, M, D, N, DF, N )
  278. *
  279. * Apply Q to D as D*Q
  280. *
  281. srnamt = 'ZGEMQR'
  282. CALL ZGEMQR( 'R', 'N', N, M, K, AF, M, T, TSIZE, DF, N,
  283. $ WORK, LWORK, INFO)
  284. *
  285. * Compute |D*Q - D*Q| / |D|
  286. *
  287. CALL ZGEMM( 'N', 'N', N, M, M, -ONE, D, N, Q, M, ONE, DF, N )
  288. RESID = ZLANGE( '1', N, M, DF, N, RWORK )
  289. IF( DNORM.GT.ZERO ) THEN
  290. RESULT( 5 ) = RESID / (EPS*MAX(1,M)*DNORM)
  291. ELSE
  292. RESULT( 5 ) = ZERO
  293. END IF
  294. *
  295. * Copy D into DF again
  296. *
  297. CALL ZLACPY( 'Full', N, M, D, N, DF, N )
  298. *
  299. * Apply Q to D as D*QT
  300. *
  301. CALL ZGEMQR( 'R', 'C', N, M, K, AF, M, T, TSIZE, DF, N,
  302. $ WORK, LWORK, INFO)
  303. *
  304. * Compute |D*QT - D*QT| / |D|
  305. *
  306. CALL ZGEMM( 'N', 'C', N, M, M, -ONE, D, N, Q, M, ONE, DF, N )
  307. RESID = ZLANGE( '1', N, M, DF, N, RWORK )
  308. IF( CNORM.GT.ZERO ) THEN
  309. RESULT( 6 ) = RESID / (EPS*MAX(1,M)*DNORM)
  310. ELSE
  311. RESULT( 6 ) = ZERO
  312. END IF
  313. *
  314. * Short and wide
  315. *
  316. ELSE
  317. CALL ZGELQ( M, N, AF, M, TQUERY, -1, WORKQUERY, -1, INFO )
  318. TSIZE = INT( TQUERY( 1 ) )
  319. LWORK = INT( WORKQUERY )
  320. CALL ZGEMLQ( 'R', 'N', N, N, K, AF, M, TQUERY, TSIZE, Q, N,
  321. $ WORKQUERY, -1, INFO )
  322. LWORK = MAX( LWORK, INT( WORKQUERY ) )
  323. CALL ZGEMLQ( 'L', 'N', N, M, K, AF, M, TQUERY, TSIZE, DF, N,
  324. $ WORKQUERY, -1, INFO)
  325. LWORK = MAX( LWORK, INT( WORKQUERY ) )
  326. CALL ZGEMLQ( 'L', 'C', N, M, K, AF, M, TQUERY, TSIZE, DF, N,
  327. $ WORKQUERY, -1, INFO)
  328. LWORK = MAX( LWORK, INT( WORKQUERY ) )
  329. CALL ZGEMLQ( 'R', 'N', M, N, K, AF, M, TQUERY, TSIZE, CF, M,
  330. $ WORKQUERY, -1, INFO)
  331. LWORK = MAX( LWORK, INT( WORKQUERY ) )
  332. CALL ZGEMLQ( 'R', 'C', M, N, K, AF, M, TQUERY, TSIZE, CF, M,
  333. $ WORKQUERY, -1, INFO)
  334. LWORK = MAX( LWORK, INT( WORKQUERY ) )
  335. ALLOCATE ( T( TSIZE ) )
  336. ALLOCATE ( WORK( LWORK ) )
  337. srnamt = 'ZGELQ'
  338. CALL ZGELQ( M, N, AF, M, T, TSIZE, WORK, LWORK, INFO )
  339. *
  340. *
  341. * Generate the n-by-n matrix Q
  342. *
  343. CALL ZLASET( 'Full', N, N, CZERO, ONE, Q, N )
  344. srnamt = 'ZGEMLQ'
  345. CALL ZGEMLQ( 'R', 'N', N, N, K, AF, M, T, TSIZE, Q, N,
  346. $ WORK, LWORK, INFO )
  347. *
  348. * Copy R
  349. *
  350. CALL ZLASET( 'Full', M, N, CZERO, CZERO, LQ, L )
  351. CALL ZLACPY( 'Lower', M, N, AF, M, LQ, L )
  352. *
  353. * Compute |L - A*Q'| / |A| and store in RESULT(1)
  354. *
  355. CALL ZGEMM( 'N', 'C', M, N, N, -ONE, A, M, Q, N, ONE, LQ, L )
  356. ANORM = ZLANGE( '1', M, N, A, M, RWORK )
  357. RESID = ZLANGE( '1', M, N, LQ, L, RWORK )
  358. IF( ANORM.GT.ZERO ) THEN
  359. RESULT( 1 ) = RESID / (EPS*MAX(1,N)*ANORM)
  360. ELSE
  361. RESULT( 1 ) = ZERO
  362. END IF
  363. *
  364. * Compute |I - Q'*Q| and store in RESULT(2)
  365. *
  366. CALL ZLASET( 'Full', N, N, CZERO, ONE, LQ, L )
  367. CALL ZHERK( 'U', 'C', N, N, DREAL(-ONE), Q, N, DREAL(ONE), LQ, L)
  368. RESID = ZLANSY( '1', 'Upper', N, LQ, L, RWORK )
  369. RESULT( 2 ) = RESID / (EPS*MAX(1,N))
  370. *
  371. * Generate random m-by-n matrix C and a copy CF
  372. *
  373. DO J=1,M
  374. CALL ZLARNV( 2, ISEED, N, D( 1, J ) )
  375. END DO
  376. DNORM = ZLANGE( '1', N, M, D, N, RWORK)
  377. CALL ZLACPY( 'Full', N, M, D, N, DF, N )
  378. *
  379. * Apply Q to C as Q*C
  380. *
  381. CALL ZGEMLQ( 'L', 'N', N, M, K, AF, M, T, TSIZE, DF, N,
  382. $ WORK, LWORK, INFO)
  383. *
  384. * Compute |Q*D - Q*D| / |D|
  385. *
  386. CALL ZGEMM( 'N', 'N', N, M, N, -ONE, Q, N, D, N, ONE, DF, N )
  387. RESID = ZLANGE( '1', N, M, DF, N, RWORK )
  388. IF( DNORM.GT.ZERO ) THEN
  389. RESULT( 3 ) = RESID / (EPS*MAX(1,N)*DNORM)
  390. ELSE
  391. RESULT( 3 ) = ZERO
  392. END IF
  393. *
  394. * Copy D into DF again
  395. *
  396. CALL ZLACPY( 'Full', N, M, D, N, DF, N )
  397. *
  398. * Apply Q to D as QT*D
  399. *
  400. CALL ZGEMLQ( 'L', 'C', N, M, K, AF, M, T, TSIZE, DF, N,
  401. $ WORK, LWORK, INFO)
  402. *
  403. * Compute |QT*D - QT*D| / |D|
  404. *
  405. CALL ZGEMM( 'C', 'N', N, M, N, -ONE, Q, N, D, N, ONE, DF, N )
  406. RESID = ZLANGE( '1', N, M, DF, N, RWORK )
  407. IF( DNORM.GT.ZERO ) THEN
  408. RESULT( 4 ) = RESID / (EPS*MAX(1,N)*DNORM)
  409. ELSE
  410. RESULT( 4 ) = ZERO
  411. END IF
  412. *
  413. * Generate random n-by-m matrix D and a copy DF
  414. *
  415. DO J=1,N
  416. CALL ZLARNV( 2, ISEED, M, C( 1, J ) )
  417. END DO
  418. CNORM = ZLANGE( '1', M, N, C, M, RWORK)
  419. CALL ZLACPY( 'Full', M, N, C, M, CF, M )
  420. *
  421. * Apply Q to C as C*Q
  422. *
  423. CALL ZGEMLQ( 'R', 'N', M, N, K, AF, M, T, TSIZE, CF, M,
  424. $ WORK, LWORK, INFO)
  425. *
  426. * Compute |C*Q - C*Q| / |C|
  427. *
  428. CALL ZGEMM( 'N', 'N', M, N, N, -ONE, C, M, Q, N, ONE, CF, M )
  429. RESID = ZLANGE( '1', N, M, DF, N, RWORK )
  430. IF( CNORM.GT.ZERO ) THEN
  431. RESULT( 5 ) = RESID / (EPS*MAX(1,N)*CNORM)
  432. ELSE
  433. RESULT( 5 ) = ZERO
  434. END IF
  435. *
  436. * Copy C into CF again
  437. *
  438. CALL ZLACPY( 'Full', M, N, C, M, CF, M )
  439. *
  440. * Apply Q to D as D*QT
  441. *
  442. CALL ZGEMLQ( 'R', 'C', M, N, K, AF, M, T, TSIZE, CF, M,
  443. $ WORK, LWORK, INFO)
  444. *
  445. * Compute |C*QT - C*QT| / |C|
  446. *
  447. CALL ZGEMM( 'N', 'C', M, N, N, -ONE, C, M, Q, N, ONE, CF, M )
  448. RESID = ZLANGE( '1', M, N, CF, M, RWORK )
  449. IF( CNORM.GT.ZERO ) THEN
  450. RESULT( 6 ) = RESID / (EPS*MAX(1,N)*CNORM)
  451. ELSE
  452. RESULT( 6 ) = ZERO
  453. END IF
  454. *
  455. END IF
  456. *
  457. * Deallocate all arrays
  458. *
  459. DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T, C, D, CF, DF)
  460. *
  461. RETURN
  462. END