|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241 |
- *> \brief \b SPPT03
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
- * RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER LDWORK, N
- * REAL RCOND, RESID
- * ..
- * .. Array Arguments ..
- * REAL A( * ), AINV( * ), RWORK( * ),
- * $ WORK( LDWORK, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SPPT03 computes the residual for a symmetric packed matrix times its
- *> inverse:
- *> norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
- *> where EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> symmetric matrix A is stored:
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows and columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is REAL array, dimension (N*(N+1)/2)
- *> The original symmetric matrix A, stored as a packed
- *> triangular matrix.
- *> \endverbatim
- *>
- *> \param[in] AINV
- *> \verbatim
- *> AINV is REAL array, dimension (N*(N+1)/2)
- *> The (symmetric) inverse of the matrix A, stored as a packed
- *> triangular matrix.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (LDWORK,N)
- *> \endverbatim
- *>
- *> \param[in] LDWORK
- *> \verbatim
- *> LDWORK is INTEGER
- *> The leading dimension of the array WORK. LDWORK >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is REAL
- *> The reciprocal of the condition number of A, computed as
- *> ( 1/norm(A) ) / norm(AINV).
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is REAL
- *> norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup single_lin
- *
- * =====================================================================
- SUBROUTINE SPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
- $ RESID )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER LDWORK, N
- REAL RCOND, RESID
- * ..
- * .. Array Arguments ..
- REAL A( * ), AINV( * ), RWORK( * ),
- $ WORK( LDWORK, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J, JJ
- REAL AINVNM, ANORM, EPS
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SLAMCH, SLANGE, SLANSP
- EXTERNAL LSAME, SLAMCH, SLANGE, SLANSP
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC REAL
- * ..
- * .. External Subroutines ..
- EXTERNAL SCOPY, SSPMV
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0.
- *
- IF( N.LE.0 ) THEN
- RCOND = ONE
- RESID = ZERO
- RETURN
- END IF
- *
- * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
- *
- EPS = SLAMCH( 'Epsilon' )
- ANORM = SLANSP( '1', UPLO, N, A, RWORK )
- AINVNM = SLANSP( '1', UPLO, N, AINV, RWORK )
- IF( ANORM.LE.ZERO .OR. AINVNM.EQ.ZERO ) THEN
- RCOND = ZERO
- RESID = ONE / EPS
- RETURN
- END IF
- RCOND = ( ONE / ANORM ) / AINVNM
- *
- * UPLO = 'U':
- * Copy the leading N-1 x N-1 submatrix of AINV to WORK(1:N,2:N) and
- * expand it to a full matrix, then multiply by A one column at a
- * time, moving the result one column to the left.
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- *
- * Copy AINV
- *
- JJ = 1
- DO 10 J = 1, N - 1
- CALL SCOPY( J, AINV( JJ ), 1, WORK( 1, J+1 ), 1 )
- CALL SCOPY( J-1, AINV( JJ ), 1, WORK( J, 2 ), LDWORK )
- JJ = JJ + J
- 10 CONTINUE
- JJ = ( ( N-1 )*N ) / 2 + 1
- CALL SCOPY( N-1, AINV( JJ ), 1, WORK( N, 2 ), LDWORK )
- *
- * Multiply by A
- *
- DO 20 J = 1, N - 1
- CALL SSPMV( 'Upper', N, -ONE, A, WORK( 1, J+1 ), 1, ZERO,
- $ WORK( 1, J ), 1 )
- 20 CONTINUE
- CALL SSPMV( 'Upper', N, -ONE, A, AINV( JJ ), 1, ZERO,
- $ WORK( 1, N ), 1 )
- *
- * UPLO = 'L':
- * Copy the trailing N-1 x N-1 submatrix of AINV to WORK(1:N,1:N-1)
- * and multiply by A, moving each column to the right.
- *
- ELSE
- *
- * Copy AINV
- *
- CALL SCOPY( N-1, AINV( 2 ), 1, WORK( 1, 1 ), LDWORK )
- JJ = N + 1
- DO 30 J = 2, N
- CALL SCOPY( N-J+1, AINV( JJ ), 1, WORK( J, J-1 ), 1 )
- CALL SCOPY( N-J, AINV( JJ+1 ), 1, WORK( J, J ), LDWORK )
- JJ = JJ + N - J + 1
- 30 CONTINUE
- *
- * Multiply by A
- *
- DO 40 J = N, 2, -1
- CALL SSPMV( 'Lower', N, -ONE, A, WORK( 1, J-1 ), 1, ZERO,
- $ WORK( 1, J ), 1 )
- 40 CONTINUE
- CALL SSPMV( 'Lower', N, -ONE, A, AINV( 1 ), 1, ZERO,
- $ WORK( 1, 1 ), 1 )
- *
- END IF
- *
- * Add the identity matrix to WORK .
- *
- DO 50 I = 1, N
- WORK( I, I ) = WORK( I, I ) + ONE
- 50 CONTINUE
- *
- * Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
- *
- RESID = SLANGE( '1', N, N, WORK, LDWORK, RWORK )
- *
- RESID = ( ( RESID*RCOND ) / EPS ) / REAL( N )
- *
- RETURN
- *
- * End of SPPT03
- *
- END
|