|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- *> \brief \b SPOT03
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SPOT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK,
- * RWORK, RCOND, RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER LDA, LDAINV, LDWORK, N
- * REAL RCOND, RESID
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), AINV( LDAINV, * ), RWORK( * ),
- * $ WORK( LDWORK, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SPOT03 computes the residual for a symmetric matrix times its
- *> inverse:
- *> norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
- *> where EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> symmetric matrix A is stored:
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows and columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> The original symmetric matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N)
- *> \endverbatim
- *>
- *> \param[in,out] AINV
- *> \verbatim
- *> AINV is REAL array, dimension (LDAINV,N)
- *> On entry, the inverse of the matrix A, stored as a symmetric
- *> matrix in the same format as A.
- *> In this version, AINV is expanded into a full matrix and
- *> multiplied by A, so the opposing triangle of AINV will be
- *> changed; i.e., if the upper triangular part of AINV is
- *> stored, the lower triangular part will be used as work space.
- *> \endverbatim
- *>
- *> \param[in] LDAINV
- *> \verbatim
- *> LDAINV is INTEGER
- *> The leading dimension of the array AINV. LDAINV >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (LDWORK,N)
- *> \endverbatim
- *>
- *> \param[in] LDWORK
- *> \verbatim
- *> LDWORK is INTEGER
- *> The leading dimension of the array WORK. LDWORK >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is REAL
- *> The reciprocal of the condition number of A, computed as
- *> ( 1/norm(A) ) / norm(AINV).
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is REAL
- *> norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup single_lin
- *
- * =====================================================================
- SUBROUTINE SPOT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK,
- $ RWORK, RCOND, RESID )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER LDA, LDAINV, LDWORK, N
- REAL RCOND, RESID
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), AINV( LDAINV, * ), RWORK( * ),
- $ WORK( LDWORK, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J
- REAL AINVNM, ANORM, EPS
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SLAMCH, SLANGE, SLANSY
- EXTERNAL LSAME, SLAMCH, SLANGE, SLANSY
- * ..
- * .. External Subroutines ..
- EXTERNAL SSYMM
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC REAL
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0.
- *
- IF( N.LE.0 ) THEN
- RCOND = ONE
- RESID = ZERO
- RETURN
- END IF
- *
- * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
- *
- EPS = SLAMCH( 'Epsilon' )
- ANORM = SLANSY( '1', UPLO, N, A, LDA, RWORK )
- AINVNM = SLANSY( '1', UPLO, N, AINV, LDAINV, RWORK )
- IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCOND = ZERO
- RESID = ONE / EPS
- RETURN
- END IF
- RCOND = ( ONE / ANORM ) / AINVNM
- *
- * Expand AINV into a full matrix and call SSYMM to multiply
- * AINV on the left by A.
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO 20 J = 1, N
- DO 10 I = 1, J - 1
- AINV( J, I ) = AINV( I, J )
- 10 CONTINUE
- 20 CONTINUE
- ELSE
- DO 40 J = 1, N
- DO 30 I = J + 1, N
- AINV( J, I ) = AINV( I, J )
- 30 CONTINUE
- 40 CONTINUE
- END IF
- CALL SSYMM( 'Left', UPLO, N, N, -ONE, A, LDA, AINV, LDAINV, ZERO,
- $ WORK, LDWORK )
- *
- * Add the identity matrix to WORK .
- *
- DO 50 I = 1, N
- WORK( I, I ) = WORK( I, I ) + ONE
- 50 CONTINUE
- *
- * Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
- *
- RESID = SLANGE( '1', N, N, WORK, LDWORK, RWORK )
- *
- RESID = ( ( RESID*RCOND ) / EPS ) / REAL( N )
- *
- RETURN
- *
- * End of SPOT03
- *
- END
|