You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dpot01.f 5.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223
  1. *> \brief \b DPOT01
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
  12. *
  13. * .. Scalar Arguments ..
  14. * CHARACTER UPLO
  15. * INTEGER LDA, LDAFAC, N
  16. * DOUBLE PRECISION RESID
  17. * ..
  18. * .. Array Arguments ..
  19. * DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> DPOT01 reconstructs a symmetric positive definite matrix A from
  29. *> its L*L' or U'*U factorization and computes the residual
  30. *> norm( L*L' - A ) / ( N * norm(A) * EPS ) or
  31. *> norm( U'*U - A ) / ( N * norm(A) * EPS ),
  32. *> where EPS is the machine epsilon.
  33. *> \endverbatim
  34. *
  35. * Arguments:
  36. * ==========
  37. *
  38. *> \param[in] UPLO
  39. *> \verbatim
  40. *> UPLO is CHARACTER*1
  41. *> Specifies whether the upper or lower triangular part of the
  42. *> symmetric matrix A is stored:
  43. *> = 'U': Upper triangular
  44. *> = 'L': Lower triangular
  45. *> \endverbatim
  46. *>
  47. *> \param[in] N
  48. *> \verbatim
  49. *> N is INTEGER
  50. *> The number of rows and columns of the matrix A. N >= 0.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] A
  54. *> \verbatim
  55. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  56. *> The original symmetric matrix A.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] LDA
  60. *> \verbatim
  61. *> LDA is INTEGER
  62. *> The leading dimension of the array A. LDA >= max(1,N)
  63. *> \endverbatim
  64. *>
  65. *> \param[in,out] AFAC
  66. *> \verbatim
  67. *> AFAC is DOUBLE PRECISION array, dimension (LDAFAC,N)
  68. *> On entry, the factor L or U from the L*L' or U'*U
  69. *> factorization of A.
  70. *> Overwritten with the reconstructed matrix, and then with the
  71. *> difference L*L' - A (or U'*U - A).
  72. *> \endverbatim
  73. *>
  74. *> \param[in] LDAFAC
  75. *> \verbatim
  76. *> LDAFAC is INTEGER
  77. *> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
  78. *> \endverbatim
  79. *>
  80. *> \param[out] RWORK
  81. *> \verbatim
  82. *> RWORK is DOUBLE PRECISION array, dimension (N)
  83. *> \endverbatim
  84. *>
  85. *> \param[out] RESID
  86. *> \verbatim
  87. *> RESID is DOUBLE PRECISION
  88. *> If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
  89. *> If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
  90. *> \endverbatim
  91. *
  92. * Authors:
  93. * ========
  94. *
  95. *> \author Univ. of Tennessee
  96. *> \author Univ. of California Berkeley
  97. *> \author Univ. of Colorado Denver
  98. *> \author NAG Ltd.
  99. *
  100. *> \date December 2016
  101. *
  102. *> \ingroup double_lin
  103. *
  104. * =====================================================================
  105. SUBROUTINE DPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
  106. *
  107. * -- LAPACK test routine (version 3.7.0) --
  108. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  109. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  110. * December 2016
  111. *
  112. * .. Scalar Arguments ..
  113. CHARACTER UPLO
  114. INTEGER LDA, LDAFAC, N
  115. DOUBLE PRECISION RESID
  116. * ..
  117. * .. Array Arguments ..
  118. DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
  119. * ..
  120. *
  121. * =====================================================================
  122. *
  123. * .. Parameters ..
  124. DOUBLE PRECISION ZERO, ONE
  125. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  126. * ..
  127. * .. Local Scalars ..
  128. INTEGER I, J, K
  129. DOUBLE PRECISION ANORM, EPS, T
  130. * ..
  131. * .. External Functions ..
  132. LOGICAL LSAME
  133. DOUBLE PRECISION DDOT, DLAMCH, DLANSY
  134. EXTERNAL LSAME, DDOT, DLAMCH, DLANSY
  135. * ..
  136. * .. External Subroutines ..
  137. EXTERNAL DSCAL, DSYR, DTRMV
  138. * ..
  139. * .. Intrinsic Functions ..
  140. INTRINSIC DBLE
  141. * ..
  142. * .. Executable Statements ..
  143. *
  144. * Quick exit if N = 0.
  145. *
  146. IF( N.LE.0 ) THEN
  147. RESID = ZERO
  148. RETURN
  149. END IF
  150. *
  151. * Exit with RESID = 1/EPS if ANORM = 0.
  152. *
  153. EPS = DLAMCH( 'Epsilon' )
  154. ANORM = DLANSY( '1', UPLO, N, A, LDA, RWORK )
  155. IF( ANORM.LE.ZERO ) THEN
  156. RESID = ONE / EPS
  157. RETURN
  158. END IF
  159. *
  160. * Compute the product U'*U, overwriting U.
  161. *
  162. IF( LSAME( UPLO, 'U' ) ) THEN
  163. DO 10 K = N, 1, -1
  164. *
  165. * Compute the (K,K) element of the result.
  166. *
  167. T = DDOT( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 )
  168. AFAC( K, K ) = T
  169. *
  170. * Compute the rest of column K.
  171. *
  172. CALL DTRMV( 'Upper', 'Transpose', 'Non-unit', K-1, AFAC,
  173. $ LDAFAC, AFAC( 1, K ), 1 )
  174. *
  175. 10 CONTINUE
  176. *
  177. * Compute the product L*L', overwriting L.
  178. *
  179. ELSE
  180. DO 20 K = N, 1, -1
  181. *
  182. * Add a multiple of column K of the factor L to each of
  183. * columns K+1 through N.
  184. *
  185. IF( K+1.LE.N )
  186. $ CALL DSYR( 'Lower', N-K, ONE, AFAC( K+1, K ), 1,
  187. $ AFAC( K+1, K+1 ), LDAFAC )
  188. *
  189. * Scale column K by the diagonal element.
  190. *
  191. T = AFAC( K, K )
  192. CALL DSCAL( N-K+1, T, AFAC( K, K ), 1 )
  193. *
  194. 20 CONTINUE
  195. END IF
  196. *
  197. * Compute the difference L*L' - A (or U'*U - A).
  198. *
  199. IF( LSAME( UPLO, 'U' ) ) THEN
  200. DO 40 J = 1, N
  201. DO 30 I = 1, J
  202. AFAC( I, J ) = AFAC( I, J ) - A( I, J )
  203. 30 CONTINUE
  204. 40 CONTINUE
  205. ELSE
  206. DO 60 J = 1, N
  207. DO 50 I = J, N
  208. AFAC( I, J ) = AFAC( I, J ) - A( I, J )
  209. 50 CONTINUE
  210. 60 CONTINUE
  211. END IF
  212. *
  213. * Compute norm( L*U - A ) / ( N * norm(A) * EPS )
  214. *
  215. RESID = DLANSY( '1', UPLO, N, AFAC, LDAFAC, RWORK )
  216. *
  217. RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
  218. *
  219. RETURN
  220. *
  221. * End of DPOT01
  222. *
  223. END