|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462 |
- *> \brief \b CTSQR01
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CTSQR01(TSSW, M,N, MB, NB, RESULT)
- *
- * .. Scalar Arguments ..
- * INTEGER M, N, MB
- * .. Return values ..
- * REAL RESULT(6)
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DTSQR01 tests DGEQR , DGELQ, DGEMLQ and DGEMQR.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TSSW
- *> \verbatim
- *> TSSW is CHARACTER
- *> 'TS' for testing tall skinny QR
- *> and anything else for testing short wide LQ
- *> \endverbatim
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> Number of rows in test matrix.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> Number of columns in test matrix.
- *> \endverbatim
- *> \param[in] MB
- *> \verbatim
- *> MB is INTEGER
- *> Number of row in row block in test matrix.
- *> \endverbatim
- *>
- *> \param[in] NB
- *> \verbatim
- *> NB is INTEGER
- *> Number of columns in column block test matrix.
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is REAL array, dimension (6)
- *> Results of each of the six tests below.
- *>
- *> RESULT(1) = | A - Q R | or | A - L Q |
- *> RESULT(2) = | I - Q^H Q | or | I - Q Q^H |
- *> RESULT(3) = | Q C - Q C |
- *> RESULT(4) = | Q^H C - Q^H C |
- *> RESULT(5) = | C Q - C Q |
- *> RESULT(6) = | C Q^H - C Q^H |
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date April 2012
- *
- * =====================================================================
- SUBROUTINE CTSQR01(TSSW, M, N, MB, NB, RESULT)
- IMPLICIT NONE
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * April 2012
- *
- * .. Scalar Arguments ..
- CHARACTER TSSW
- INTEGER M, N, MB, NB
- * .. Return values ..
- REAL RESULT(6)
- *
- * =====================================================================
- *
- * ..
- * .. Local allocatable arrays
- COMPLEX, ALLOCATABLE :: AF(:,:), Q(:,:),
- $ R(:,:), RWORK(:), WORK( : ), T(:),
- $ CF(:,:), DF(:,:), A(:,:), C(:,:), D(:,:), LQ(:,:)
- *
- * .. Parameters ..
- REAL ZERO
- COMPLEX ONE, CZERO
- PARAMETER( ZERO = 0.0, ONE = (1.0,0.0), CZERO=(0.0,0.0) )
- * ..
- * .. Local Scalars ..
- LOGICAL TESTZEROS, TS
- INTEGER INFO, J, K, L, LWORK, TSIZE, MNB
- REAL ANORM, EPS, RESID, CNORM, DNORM
- * ..
- * .. Local Arrays ..
- INTEGER ISEED( 4 )
- COMPLEX TQUERY( 5 ), WORKQUERY
- * ..
- * .. External Functions ..
- REAL SLAMCH, CLANGE, CLANSY
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL SLAMCH, CLANGE, CLANSY, LSAME, ILAENV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * .. Scalars in Common ..
- CHARACTER*32 srnamt
- * ..
- * .. Common blocks ..
- COMMON / srnamc / srnamt
- * ..
- * .. Data statements ..
- DATA ISEED / 1988, 1989, 1990, 1991 /
- *
- * TEST TALL SKINNY OR SHORT WIDE
- *
- TS = LSAME(TSSW, 'TS')
- *
- * TEST MATRICES WITH HALF OF MATRIX BEING ZEROS
- *
- TESTZEROS = .FALSE.
- *
- EPS = SLAMCH( 'Epsilon' )
- K = MIN(M,N)
- L = MAX(M,N,1)
- MNB = MAX ( MB, NB)
- LWORK = MAX(3,L)*MNB
- *
- * Dynamically allocate local arrays
- *
- ALLOCATE ( A(M,N), AF(M,N), Q(L,L), R(M,L), RWORK(L),
- $ C(M,N), CF(M,N),
- $ D(N,M), DF(N,M), LQ(L,N) )
- *
- * Put random numbers into A and copy to AF
- *
- DO J=1,N
- CALL CLARNV( 2, ISEED, M, A( 1, J ) )
- END DO
- IF (TESTZEROS) THEN
- IF (M.GE.4) THEN
- DO J=1,N
- CALL CLARNV( 2, ISEED, M/2, A( M/4, J ) )
- END DO
- END IF
- END IF
- CALL CLACPY( 'Full', M, N, A, M, AF, M )
- *
- IF (TS) THEN
- *
- * Factor the matrix A in the array AF.
- *
- CALL CGEQR( M, N, AF, M, TQUERY, -1, WORKQUERY, -1, INFO )
- TSIZE = INT( TQUERY( 1 ) )
- LWORK = INT( WORKQUERY )
- CALL CGEMQR( 'L', 'N', M, M, K, AF, M, TQUERY, TSIZE, CF, M,
- $ WORKQUERY, -1, INFO)
- LWORK = MAX( LWORK, INT( WORKQUERY ) )
- CALL CGEMQR( 'L', 'N', M, N, K, AF, M, TQUERY, TSIZE, CF, M,
- $ WORKQUERY, -1, INFO)
- LWORK = MAX( LWORK, INT( WORKQUERY ) )
- CALL CGEMQR( 'L', 'C', M, N, K, AF, M, TQUERY, TSIZE, CF, M,
- $ WORKQUERY, -1, INFO)
- LWORK = MAX( LWORK, INT( WORKQUERY ) )
- CALL CGEMQR( 'R', 'N', N, M, K, AF, M, TQUERY, TSIZE, DF, N,
- $ WORKQUERY, -1, INFO)
- LWORK = MAX( LWORK, INT( WORKQUERY ) )
- CALL CGEMQR( 'R', 'C', N, M, K, AF, M, TQUERY, TSIZE, DF, N,
- $ WORKQUERY, -1, INFO)
- LWORK = MAX( LWORK, INT( WORKQUERY ) )
- ALLOCATE ( T( TSIZE ) )
- ALLOCATE ( WORK( LWORK ) )
- srnamt = 'CGEQR'
- CALL CGEQR( M, N, AF, M, T, TSIZE, WORK, LWORK, INFO )
- *
- * Generate the m-by-m matrix Q
- *
- CALL CLASET( 'Full', M, M, CZERO, ONE, Q, M )
- srnamt = 'CGEMQR'
- CALL CGEMQR( 'L', 'N', M, M, K, AF, M, T, TSIZE, Q, M,
- $ WORK, LWORK, INFO )
- *
- * Copy R
- *
- CALL CLASET( 'Full', M, N, CZERO, CZERO, R, M )
- CALL CLACPY( 'Upper', M, N, AF, M, R, M )
- *
- * Compute |R - Q'*A| / |A| and store in RESULT(1)
- *
- CALL CGEMM( 'C', 'N', M, N, M, -ONE, Q, M, A, M, ONE, R, M )
- ANORM = CLANGE( '1', M, N, A, M, RWORK )
- RESID = CLANGE( '1', M, N, R, M, RWORK )
- IF( ANORM.GT.ZERO ) THEN
- RESULT( 1 ) = RESID / (EPS*MAX(1,M)*ANORM)
- ELSE
- RESULT( 1 ) = ZERO
- END IF
- *
- * Compute |I - Q'*Q| and store in RESULT(2)
- *
- CALL CLASET( 'Full', M, M, CZERO, ONE, R, M )
- CALL CHERK( 'U', 'C', M, M, REAL(-ONE), Q, M, REAL(ONE), R, M )
- RESID = CLANSY( '1', 'Upper', M, R, M, RWORK )
- RESULT( 2 ) = RESID / (EPS*MAX(1,M))
- *
- * Generate random m-by-n matrix C and a copy CF
- *
- DO J=1,N
- CALL CLARNV( 2, ISEED, M, C( 1, J ) )
- END DO
- CNORM = CLANGE( '1', M, N, C, M, RWORK)
- CALL CLACPY( 'Full', M, N, C, M, CF, M )
- *
- * Apply Q to C as Q*C
- *
- srnamt = 'CGEMQR'
- CALL CGEMQR( 'L', 'N', M, N, K, AF, M, T, TSIZE, CF, M,
- $ WORK, LWORK, INFO)
- *
- * Compute |Q*C - Q*C| / |C|
- *
- CALL CGEMM( 'N', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M )
- RESID = CLANGE( '1', M, N, CF, M, RWORK )
- IF( CNORM.GT.ZERO ) THEN
- RESULT( 3 ) = RESID / (EPS*MAX(1,M)*CNORM)
- ELSE
- RESULT( 3 ) = ZERO
- END IF
- *
- * Copy C into CF again
- *
- CALL CLACPY( 'Full', M, N, C, M, CF, M )
- *
- * Apply Q to C as QT*C
- *
- srnamt = 'CGEMQR'
- CALL CGEMQR( 'L', 'C', M, N, K, AF, M, T, TSIZE, CF, M,
- $ WORK, LWORK, INFO)
- *
- * Compute |QT*C - QT*C| / |C|
- *
- CALL CGEMM( 'C', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M )
- RESID = CLANGE( '1', M, N, CF, M, RWORK )
- IF( CNORM.GT.ZERO ) THEN
- RESULT( 4 ) = RESID / (EPS*MAX(1,M)*CNORM)
- ELSE
- RESULT( 4 ) = ZERO
- END IF
- *
- * Generate random n-by-m matrix D and a copy DF
- *
- DO J=1,M
- CALL CLARNV( 2, ISEED, N, D( 1, J ) )
- END DO
- DNORM = CLANGE( '1', N, M, D, N, RWORK)
- CALL CLACPY( 'Full', N, M, D, N, DF, N )
- *
- * Apply Q to D as D*Q
- *
- srnamt = 'CGEMQR'
- CALL CGEMQR( 'R', 'N', N, M, K, AF, M, T, TSIZE, DF, N,
- $ WORK, LWORK, INFO)
- *
- * Compute |D*Q - D*Q| / |D|
- *
- CALL CGEMM( 'N', 'N', N, M, M, -ONE, D, N, Q, M, ONE, DF, N )
- RESID = CLANGE( '1', N, M, DF, N, RWORK )
- IF( DNORM.GT.ZERO ) THEN
- RESULT( 5 ) = RESID / (EPS*MAX(1,M)*DNORM)
- ELSE
- RESULT( 5 ) = ZERO
- END IF
- *
- * Copy D into DF again
- *
- CALL CLACPY( 'Full', N, M, D, N, DF, N )
- *
- * Apply Q to D as D*QT
- *
- CALL CGEMQR( 'R', 'C', N, M, K, AF, M, T, TSIZE, DF, N,
- $ WORK, LWORK, INFO)
- *
- * Compute |D*QT - D*QT| / |D|
- *
- CALL CGEMM( 'N', 'C', N, M, M, -ONE, D, N, Q, M, ONE, DF, N )
- RESID = CLANGE( '1', N, M, DF, N, RWORK )
- IF( CNORM.GT.ZERO ) THEN
- RESULT( 6 ) = RESID / (EPS*MAX(1,M)*DNORM)
- ELSE
- RESULT( 6 ) = ZERO
- END IF
- *
- * Short and wide
- *
- ELSE
- CALL CGELQ( M, N, AF, M, TQUERY, -1, WORKQUERY, -1, INFO )
- TSIZE = INT( TQUERY( 1 ) )
- LWORK = INT( WORKQUERY )
- CALL CGEMLQ( 'R', 'N', N, N, K, AF, M, TQUERY, TSIZE, Q, N,
- $ WORKQUERY, -1, INFO )
- LWORK = MAX( LWORK, INT( WORKQUERY ) )
- CALL CGEMLQ( 'L', 'N', N, M, K, AF, M, TQUERY, TSIZE, DF, N,
- $ WORKQUERY, -1, INFO)
- LWORK = MAX( LWORK, INT( WORKQUERY ) )
- CALL CGEMLQ( 'L', 'C', N, M, K, AF, M, TQUERY, TSIZE, DF, N,
- $ WORKQUERY, -1, INFO)
- LWORK = MAX( LWORK, INT( WORKQUERY ) )
- CALL CGEMLQ( 'R', 'N', M, N, K, AF, M, TQUERY, TSIZE, CF, M,
- $ WORKQUERY, -1, INFO)
- LWORK = MAX( LWORK, INT( WORKQUERY ) )
- CALL CGEMLQ( 'R', 'C', M, N, K, AF, M, TQUERY, TSIZE, CF, M,
- $ WORKQUERY, -1, INFO)
- LWORK = MAX( LWORK, INT( WORKQUERY ) )
- ALLOCATE ( T( TSIZE ) )
- ALLOCATE ( WORK( LWORK ) )
- srnamt = 'CGELQ'
- CALL CGELQ( M, N, AF, M, T, TSIZE, WORK, LWORK, INFO )
- *
- *
- * Generate the n-by-n matrix Q
- *
- CALL CLASET( 'Full', N, N, CZERO, ONE, Q, N )
- srnamt = 'CGEMLQ'
- CALL CGEMLQ( 'R', 'N', N, N, K, AF, M, T, TSIZE, Q, N,
- $ WORK, LWORK, INFO )
- *
- * Copy R
- *
- CALL CLASET( 'Full', M, N, CZERO, CZERO, LQ, L )
- CALL CLACPY( 'Lower', M, N, AF, M, LQ, L )
- *
- * Compute |L - A*Q'| / |A| and store in RESULT(1)
- *
- CALL CGEMM( 'N', 'C', M, N, N, -ONE, A, M, Q, N, ONE, LQ, L )
- ANORM = CLANGE( '1', M, N, A, M, RWORK )
- RESID = CLANGE( '1', M, N, LQ, L, RWORK )
- IF( ANORM.GT.ZERO ) THEN
- RESULT( 1 ) = RESID / (EPS*MAX(1,N)*ANORM)
- ELSE
- RESULT( 1 ) = ZERO
- END IF
- *
- * Compute |I - Q'*Q| and store in RESULT(2)
- *
- CALL CLASET( 'Full', N, N, CZERO, ONE, LQ, L )
- CALL CHERK( 'U', 'C', N, N, REAL(-ONE), Q, N, REAL(ONE), LQ, L)
- RESID = CLANSY( '1', 'Upper', N, LQ, L, RWORK )
- RESULT( 2 ) = RESID / (EPS*MAX(1,N))
- *
- * Generate random m-by-n matrix C and a copy CF
- *
- DO J=1,M
- CALL CLARNV( 2, ISEED, N, D( 1, J ) )
- END DO
- DNORM = CLANGE( '1', N, M, D, N, RWORK)
- CALL CLACPY( 'Full', N, M, D, N, DF, N )
- *
- * Apply Q to C as Q*C
- *
- CALL CGEMLQ( 'L', 'N', N, M, K, AF, M, T, TSIZE, DF, N,
- $ WORK, LWORK, INFO)
- *
- * Compute |Q*D - Q*D| / |D|
- *
- CALL CGEMM( 'N', 'N', N, M, N, -ONE, Q, N, D, N, ONE, DF, N )
- RESID = CLANGE( '1', N, M, DF, N, RWORK )
- IF( DNORM.GT.ZERO ) THEN
- RESULT( 3 ) = RESID / (EPS*MAX(1,N)*DNORM)
- ELSE
- RESULT( 3 ) = ZERO
- END IF
- *
- * Copy D into DF again
- *
- CALL CLACPY( 'Full', N, M, D, N, DF, N )
- *
- * Apply Q to D as QT*D
- *
- CALL CGEMLQ( 'L', 'C', N, M, K, AF, M, T, TSIZE, DF, N,
- $ WORK, LWORK, INFO)
- *
- * Compute |QT*D - QT*D| / |D|
- *
- CALL CGEMM( 'C', 'N', N, M, N, -ONE, Q, N, D, N, ONE, DF, N )
- RESID = CLANGE( '1', N, M, DF, N, RWORK )
- IF( DNORM.GT.ZERO ) THEN
- RESULT( 4 ) = RESID / (EPS*MAX(1,N)*DNORM)
- ELSE
- RESULT( 4 ) = ZERO
- END IF
- *
- * Generate random n-by-m matrix D and a copy DF
- *
- DO J=1,N
- CALL CLARNV( 2, ISEED, M, C( 1, J ) )
- END DO
- CNORM = CLANGE( '1', M, N, C, M, RWORK)
- CALL CLACPY( 'Full', M, N, C, M, CF, M )
- *
- * Apply Q to C as C*Q
- *
- CALL CGEMLQ( 'R', 'N', M, N, K, AF, M, T, TSIZE, CF, M,
- $ WORK, LWORK, INFO)
- *
- * Compute |C*Q - C*Q| / |C|
- *
- CALL CGEMM( 'N', 'N', M, N, N, -ONE, C, M, Q, N, ONE, CF, M )
- RESID = CLANGE( '1', N, M, DF, N, RWORK )
- IF( CNORM.GT.ZERO ) THEN
- RESULT( 5 ) = RESID / (EPS*MAX(1,N)*CNORM)
- ELSE
- RESULT( 5 ) = ZERO
- END IF
- *
- * Copy C into CF again
- *
- CALL CLACPY( 'Full', M, N, C, M, CF, M )
- *
- * Apply Q to D as D*QT
- *
- CALL CGEMLQ( 'R', 'C', M, N, K, AF, M, T, TSIZE, CF, M,
- $ WORK, LWORK, INFO)
- *
- * Compute |C*QT - C*QT| / |C|
- *
- CALL CGEMM( 'N', 'C', M, N, N, -ONE, C, M, Q, N, ONE, CF, M )
- RESID = CLANGE( '1', M, N, CF, M, RWORK )
- IF( CNORM.GT.ZERO ) THEN
- RESULT( 6 ) = RESID / (EPS*MAX(1,N)*CNORM)
- ELSE
- RESULT( 6 ) = ZERO
- END IF
- *
- END IF
- *
- * Deallocate all arrays
- *
- DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T, C, D, CF, DF)
- *
- RETURN
- END
|