You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clqt04.f 6.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262
  1. *> \brief \b DLQT04
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CLQT04(M,N,NB,RESULT)
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER M, N, NB
  15. * .. Return values ..
  16. * REAL RESULT(6)
  17. *
  18. *
  19. *> \par Purpose:
  20. * =============
  21. *>
  22. *> \verbatim
  23. *>
  24. *> CLQT04 tests CGELQT and CGEMLQT.
  25. *> \endverbatim
  26. *
  27. * Arguments:
  28. * ==========
  29. *
  30. *> \param[in] M
  31. *> \verbatim
  32. *> M is INTEGER
  33. *> Number of rows in test matrix.
  34. *> \endverbatim
  35. *>
  36. *> \param[in] N
  37. *> \verbatim
  38. *> N is INTEGER
  39. *> Number of columns in test matrix.
  40. *> \endverbatim
  41. *>
  42. *> \param[in] NB
  43. *> \verbatim
  44. *> NB is INTEGER
  45. *> Block size of test matrix. NB <= Min(M,N).
  46. *> \endverbatim
  47. *>
  48. *> \param[out] RESULT
  49. *> \verbatim
  50. *> RESULT is DOUBLE PRECISION array, dimension (6)
  51. *> Results of each of the six tests below.
  52. *>
  53. *> RESULT(1) = | A - L Q |
  54. *> RESULT(2) = | I - Q Q^H |
  55. *> RESULT(3) = | Q C - Q C |
  56. *> RESULT(4) = | Q^H C - Q^H C |
  57. *> RESULT(5) = | C Q - C Q |
  58. *> RESULT(6) = | C Q^H - C Q^H |
  59. *> \endverbatim
  60. *
  61. * Authors:
  62. * ========
  63. *
  64. *> \author Univ. of Tennessee
  65. *> \author Univ. of California Berkeley
  66. *> \author Univ. of Colorado Denver
  67. *> \author NAG Ltd.
  68. *
  69. *> \date April 2012
  70. *
  71. *> \ingroup double_lin
  72. *
  73. * =====================================================================
  74. SUBROUTINE CLQT04(M,N,NB,RESULT)
  75. IMPLICIT NONE
  76. *
  77. * -- LAPACK test routine (version 3.7.0) --
  78. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  79. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  80. * April 2012
  81. *
  82. * .. Scalar Arguments ..
  83. INTEGER M, N, NB
  84. * .. Return values ..
  85. REAL RESULT(6)
  86. *
  87. * =====================================================================
  88. *
  89. * ..
  90. * .. Local allocatable arrays
  91. COMPLEX, ALLOCATABLE :: AF(:,:), Q(:,:),
  92. $ L(:,:), RWORK(:), WORK( : ), T(:,:),
  93. $ CF(:,:), DF(:,:), A(:,:), C(:,:), D(:,:)
  94. *
  95. * .. Parameters ..
  96. REAL ZERO
  97. COMPLEX ONE, CZERO
  98. PARAMETER( ZERO = 0.0)
  99. PARAMETER( ONE = (1.0,0.0), CZERO=(0.0,0.0) )
  100. * ..
  101. * .. Local Scalars ..
  102. INTEGER INFO, J, K, LL, LWORK, LDT
  103. REAL ANORM, EPS, RESID, CNORM, DNORM
  104. * ..
  105. * .. Local Arrays ..
  106. INTEGER ISEED( 4 )
  107. * ..
  108. * .. External Functions ..
  109. REAL SLAMCH
  110. REAL CLANGE, CLANSY
  111. LOGICAL LSAME
  112. EXTERNAL SLAMCH, CLANGE, CLANSY, LSAME
  113. * ..
  114. * .. Intrinsic Functions ..
  115. INTRINSIC MAX, MIN
  116. * ..
  117. * .. Data statements ..
  118. DATA ISEED / 1988, 1989, 1990, 1991 /
  119. *
  120. EPS = SLAMCH( 'Epsilon' )
  121. K = MIN(M,N)
  122. LL = MAX(M,N)
  123. LWORK = MAX(2,LL)*MAX(2,LL)*NB
  124. *
  125. * Dynamically allocate local arrays
  126. *
  127. ALLOCATE ( A(M,N), AF(M,N), Q(N,N), L(LL,N), RWORK(LL),
  128. $ WORK(LWORK), T(NB,N), C(M,N), CF(M,N),
  129. $ D(N,M), DF(N,M) )
  130. *
  131. * Put random numbers into A and copy to AF
  132. *
  133. LDT=NB
  134. DO J=1,N
  135. CALL CLARNV( 2, ISEED, M, A( 1, J ) )
  136. END DO
  137. CALL CLACPY( 'Full', M, N, A, M, AF, M )
  138. *
  139. * Factor the matrix A in the array AF.
  140. *
  141. CALL CGELQT( M, N, NB, AF, M, T, LDT, WORK, INFO )
  142. *
  143. * Generate the n-by-n matrix Q
  144. *
  145. CALL CLASET( 'Full', N, N, CZERO, ONE, Q, N )
  146. CALL CGEMLQT( 'R', 'N', N, N, K, NB, AF, M, T, LDT, Q, N,
  147. $ WORK, INFO )
  148. *
  149. * Copy L
  150. *
  151. CALL CLASET( 'Full', LL, N, CZERO, CZERO, L, LL )
  152. CALL CLACPY( 'Lower', M, N, AF, M, L, LL )
  153. *
  154. * Compute |L - A*Q'| / |A| and store in RESULT(1)
  155. *
  156. CALL CGEMM( 'N', 'C', M, N, N, -ONE, A, M, Q, N, ONE, L, LL )
  157. ANORM = CLANGE( '1', M, N, A, M, RWORK )
  158. RESID = CLANGE( '1', M, N, L, LL, RWORK )
  159. IF( ANORM.GT.ZERO ) THEN
  160. RESULT( 1 ) = RESID / (EPS*MAX(1,M)*ANORM)
  161. ELSE
  162. RESULT( 1 ) = ZERO
  163. END IF
  164. *
  165. * Compute |I - Q'*Q| and store in RESULT(2)
  166. *
  167. CALL CLASET( 'Full', N, N, CZERO, ONE, L, LL )
  168. CALL CHERK( 'U', 'C', N, N, REAL(-ONE), Q, N, REAL(ONE), L, LL)
  169. RESID = CLANSY( '1', 'Upper', N, L, LL, RWORK )
  170. RESULT( 2 ) = RESID / (EPS*MAX(1,N))
  171. *
  172. * Generate random m-by-n matrix C and a copy CF
  173. *
  174. DO J=1,M
  175. CALL CLARNV( 2, ISEED, N, D( 1, J ) )
  176. END DO
  177. DNORM = CLANGE( '1', N, M, D, N, RWORK)
  178. CALL CLACPY( 'Full', N, M, D, N, DF, N )
  179. *
  180. * Apply Q to C as Q*C
  181. *
  182. CALL CGEMLQT( 'L', 'N', N, M, K, NB, AF, M, T, NB, DF, N,
  183. $ WORK, INFO)
  184. *
  185. * Compute |Q*D - Q*D| / |D|
  186. *
  187. CALL CGEMM( 'N', 'N', N, M, N, -ONE, Q, N, D, N, ONE, DF, N )
  188. RESID = CLANGE( '1', N, M, DF, N, RWORK )
  189. IF( DNORM.GT.ZERO ) THEN
  190. RESULT( 3 ) = RESID / (EPS*MAX(1,M)*DNORM)
  191. ELSE
  192. RESULT( 3 ) = ZERO
  193. END IF
  194. *
  195. * Copy D into DF again
  196. *
  197. CALL CLACPY( 'Full', N, M, D, N, DF, N )
  198. *
  199. * Apply Q to D as QT*D
  200. *
  201. CALL CGEMLQT( 'L', 'C', N, M, K, NB, AF, M, T, NB, DF, N,
  202. $ WORK, INFO)
  203. *
  204. * Compute |QT*D - QT*D| / |D|
  205. *
  206. CALL CGEMM( 'C', 'N', N, M, N, -ONE, Q, N, D, N, ONE, DF, N )
  207. RESID = CLANGE( '1', N, M, DF, N, RWORK )
  208. IF( DNORM.GT.ZERO ) THEN
  209. RESULT( 4 ) = RESID / (EPS*MAX(1,M)*DNORM)
  210. ELSE
  211. RESULT( 4 ) = ZERO
  212. END IF
  213. *
  214. * Generate random n-by-m matrix D and a copy DF
  215. *
  216. DO J=1,N
  217. CALL CLARNV( 2, ISEED, M, C( 1, J ) )
  218. END DO
  219. CNORM = CLANGE( '1', M, N, C, M, RWORK)
  220. CALL CLACPY( 'Full', M, N, C, M, CF, M )
  221. *
  222. * Apply Q to C as C*Q
  223. *
  224. CALL CGEMLQT( 'R', 'N', M, N, K, NB, AF, M, T, NB, CF, M,
  225. $ WORK, INFO)
  226. *
  227. * Compute |C*Q - C*Q| / |C|
  228. *
  229. CALL CGEMM( 'N', 'N', M, N, N, -ONE, C, M, Q, N, ONE, CF, M )
  230. RESID = CLANGE( '1', N, M, DF, N, RWORK )
  231. IF( CNORM.GT.ZERO ) THEN
  232. RESULT( 5 ) = RESID / (EPS*MAX(1,M)*DNORM)
  233. ELSE
  234. RESULT( 5 ) = ZERO
  235. END IF
  236. *
  237. * Copy C into CF again
  238. *
  239. CALL CLACPY( 'Full', M, N, C, M, CF, M )
  240. *
  241. * Apply Q to D as D*QT
  242. *
  243. CALL CGEMLQT( 'R', 'C', M, N, K, NB, AF, M, T, NB, CF, M,
  244. $ WORK, INFO)
  245. *
  246. * Compute |C*QT - C*QT| / |C|
  247. *
  248. CALL CGEMM( 'N', 'C', M, N, N, -ONE, C, M, Q, N, ONE, CF, M )
  249. RESID = CLANGE( '1', M, N, CF, M, RWORK )
  250. IF( CNORM.GT.ZERO ) THEN
  251. RESULT( 6 ) = RESID / (EPS*MAX(1,M)*DNORM)
  252. ELSE
  253. RESULT( 6 ) = ZERO
  254. END IF
  255. *
  256. * Deallocate all arrays
  257. *
  258. DEALLOCATE ( A, AF, Q, L, RWORK, WORK, T, C, D, CF, DF)
  259. *
  260. RETURN
  261. END