You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zchkhs.f 39 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102
  1. *> \brief \b ZCHKHS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZCHKHS( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  12. * NOUNIT, A, LDA, H, T1, T2, U, LDU, Z, UZ, W1,
  13. * W3, EVECTL, EVECTR, EVECTY, EVECTX, UU, TAU,
  14. * WORK, NWORK, RWORK, IWORK, SELECT, RESULT,
  15. * INFO )
  16. *
  17. * .. Scalar Arguments ..
  18. * INTEGER INFO, LDA, LDU, NOUNIT, NSIZES, NTYPES, NWORK
  19. * DOUBLE PRECISION THRESH
  20. * ..
  21. * .. Array Arguments ..
  22. * LOGICAL DOTYPE( * ), SELECT( * )
  23. * INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  24. * DOUBLE PRECISION RESULT( 14 ), RWORK( * )
  25. * COMPLEX*16 A( LDA, * ), EVECTL( LDU, * ),
  26. * $ EVECTR( LDU, * ), EVECTX( LDU, * ),
  27. * $ EVECTY( LDU, * ), H( LDA, * ), T1( LDA, * ),
  28. * $ T2( LDA, * ), TAU( * ), U( LDU, * ),
  29. * $ UU( LDU, * ), UZ( LDU, * ), W1( * ), W3( * ),
  30. * $ WORK( * ), Z( LDU, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZCHKHS checks the nonsymmetric eigenvalue problem routines.
  40. *>
  41. *> ZGEHRD factors A as U H U' , where ' means conjugate
  42. *> transpose, H is hessenberg, and U is unitary.
  43. *>
  44. *> ZUNGHR generates the unitary matrix U.
  45. *>
  46. *> ZUNMHR multiplies a matrix by the unitary matrix U.
  47. *>
  48. *> ZHSEQR factors H as Z T Z' , where Z is unitary and T
  49. *> is upper triangular. It also computes the eigenvalues,
  50. *> w(1), ..., w(n); we define a diagonal matrix W whose
  51. *> (diagonal) entries are the eigenvalues.
  52. *>
  53. *> ZTREVC computes the left eigenvector matrix L and the
  54. *> right eigenvector matrix R for the matrix T. The
  55. *> columns of L are the complex conjugates of the left
  56. *> eigenvectors of T. The columns of R are the right
  57. *> eigenvectors of T. L is lower triangular, and R is
  58. *> upper triangular.
  59. *>
  60. *> ZHSEIN computes the left eigenvector matrix Y and the
  61. *> right eigenvector matrix X for the matrix H. The
  62. *> columns of Y are the complex conjugates of the left
  63. *> eigenvectors of H. The columns of X are the right
  64. *> eigenvectors of H. Y is lower triangular, and X is
  65. *> upper triangular.
  66. *>
  67. *> When ZCHKHS is called, a number of matrix "sizes" ("n's") and a
  68. *> number of matrix "types" are specified. For each size ("n")
  69. *> and each type of matrix, one matrix will be generated and used
  70. *> to test the nonsymmetric eigenroutines. For each matrix, 14
  71. *> tests will be performed:
  72. *>
  73. *> (1) | A - U H U**H | / ( |A| n ulp )
  74. *>
  75. *> (2) | I - UU**H | / ( n ulp )
  76. *>
  77. *> (3) | H - Z T Z**H | / ( |H| n ulp )
  78. *>
  79. *> (4) | I - ZZ**H | / ( n ulp )
  80. *>
  81. *> (5) | A - UZ H (UZ)**H | / ( |A| n ulp )
  82. *>
  83. *> (6) | I - UZ (UZ)**H | / ( n ulp )
  84. *>
  85. *> (7) | T(Z computed) - T(Z not computed) | / ( |T| ulp )
  86. *>
  87. *> (8) | W(Z computed) - W(Z not computed) | / ( |W| ulp )
  88. *>
  89. *> (9) | TR - RW | / ( |T| |R| ulp )
  90. *>
  91. *> (10) | L**H T - W**H L | / ( |T| |L| ulp )
  92. *>
  93. *> (11) | HX - XW | / ( |H| |X| ulp )
  94. *>
  95. *> (12) | Y**H H - W**H Y | / ( |H| |Y| ulp )
  96. *>
  97. *> (13) | AX - XW | / ( |A| |X| ulp )
  98. *>
  99. *> (14) | Y**H A - W**H Y | / ( |A| |Y| ulp )
  100. *>
  101. *> The "sizes" are specified by an array NN(1:NSIZES); the value of
  102. *> each element NN(j) specifies one size.
  103. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
  104. *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
  105. *> Currently, the list of possible types is:
  106. *>
  107. *> (1) The zero matrix.
  108. *> (2) The identity matrix.
  109. *> (3) A (transposed) Jordan block, with 1's on the diagonal.
  110. *>
  111. *> (4) A diagonal matrix with evenly spaced entries
  112. *> 1, ..., ULP and random complex angles.
  113. *> (ULP = (first number larger than 1) - 1 )
  114. *> (5) A diagonal matrix with geometrically spaced entries
  115. *> 1, ..., ULP and random complex angles.
  116. *> (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
  117. *> and random complex angles.
  118. *>
  119. *> (7) Same as (4), but multiplied by SQRT( overflow threshold )
  120. *> (8) Same as (4), but multiplied by SQRT( underflow threshold )
  121. *>
  122. *> (9) A matrix of the form U' T U, where U is unitary and
  123. *> T has evenly spaced entries 1, ..., ULP with random complex
  124. *> angles on the diagonal and random O(1) entries in the upper
  125. *> triangle.
  126. *>
  127. *> (10) A matrix of the form U' T U, where U is unitary and
  128. *> T has geometrically spaced entries 1, ..., ULP with random
  129. *> complex angles on the diagonal and random O(1) entries in
  130. *> the upper triangle.
  131. *>
  132. *> (11) A matrix of the form U' T U, where U is unitary and
  133. *> T has "clustered" entries 1, ULP,..., ULP with random
  134. *> complex angles on the diagonal and random O(1) entries in
  135. *> the upper triangle.
  136. *>
  137. *> (12) A matrix of the form U' T U, where U is unitary and
  138. *> T has complex eigenvalues randomly chosen from
  139. *> ULP < |z| < 1 and random O(1) entries in the upper
  140. *> triangle.
  141. *>
  142. *> (13) A matrix of the form X' T X, where X has condition
  143. *> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
  144. *> with random complex angles on the diagonal and random O(1)
  145. *> entries in the upper triangle.
  146. *>
  147. *> (14) A matrix of the form X' T X, where X has condition
  148. *> SQRT( ULP ) and T has geometrically spaced entries
  149. *> 1, ..., ULP with random complex angles on the diagonal
  150. *> and random O(1) entries in the upper triangle.
  151. *>
  152. *> (15) A matrix of the form X' T X, where X has condition
  153. *> SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
  154. *> with random complex angles on the diagonal and random O(1)
  155. *> entries in the upper triangle.
  156. *>
  157. *> (16) A matrix of the form X' T X, where X has condition
  158. *> SQRT( ULP ) and T has complex eigenvalues randomly chosen
  159. *> from ULP < |z| < 1 and random O(1) entries in the upper
  160. *> triangle.
  161. *>
  162. *> (17) Same as (16), but multiplied by SQRT( overflow threshold )
  163. *> (18) Same as (16), but multiplied by SQRT( underflow threshold )
  164. *>
  165. *> (19) Nonsymmetric matrix with random entries chosen from |z| < 1
  166. *> (20) Same as (19), but multiplied by SQRT( overflow threshold )
  167. *> (21) Same as (19), but multiplied by SQRT( underflow threshold )
  168. *> \endverbatim
  169. *
  170. * Arguments:
  171. * ==========
  172. *
  173. *> \verbatim
  174. *> NSIZES - INTEGER
  175. *> The number of sizes of matrices to use. If it is zero,
  176. *> ZCHKHS does nothing. It must be at least zero.
  177. *> Not modified.
  178. *>
  179. *> NN - INTEGER array, dimension (NSIZES)
  180. *> An array containing the sizes to be used for the matrices.
  181. *> Zero values will be skipped. The values must be at least
  182. *> zero.
  183. *> Not modified.
  184. *>
  185. *> NTYPES - INTEGER
  186. *> The number of elements in DOTYPE. If it is zero, ZCHKHS
  187. *> does nothing. It must be at least zero. If it is MAXTYP+1
  188. *> and NSIZES is 1, then an additional type, MAXTYP+1 is
  189. *> defined, which is to use whatever matrix is in A. This
  190. *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
  191. *> DOTYPE(MAXTYP+1) is .TRUE. .
  192. *> Not modified.
  193. *>
  194. *> DOTYPE - LOGICAL array, dimension (NTYPES)
  195. *> If DOTYPE(j) is .TRUE., then for each size in NN a
  196. *> matrix of that size and of type j will be generated.
  197. *> If NTYPES is smaller than the maximum number of types
  198. *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
  199. *> MAXTYP will not be generated. If NTYPES is larger
  200. *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
  201. *> will be ignored.
  202. *> Not modified.
  203. *>
  204. *> ISEED - INTEGER array, dimension (4)
  205. *> On entry ISEED specifies the seed of the random number
  206. *> generator. The array elements should be between 0 and 4095;
  207. *> if not they will be reduced mod 4096. Also, ISEED(4) must
  208. *> be odd. The random number generator uses a linear
  209. *> congruential sequence limited to small integers, and so
  210. *> should produce machine independent random numbers. The
  211. *> values of ISEED are changed on exit, and can be used in the
  212. *> next call to ZCHKHS to continue the same random number
  213. *> sequence.
  214. *> Modified.
  215. *>
  216. *> THRESH - DOUBLE PRECISION
  217. *> A test will count as "failed" if the "error", computed as
  218. *> described above, exceeds THRESH. Note that the error
  219. *> is scaled to be O(1), so THRESH should be a reasonably
  220. *> small multiple of 1, e.g., 10 or 100. In particular,
  221. *> it should not depend on the precision (single vs. double)
  222. *> or the size of the matrix. It must be at least zero.
  223. *> Not modified.
  224. *>
  225. *> NOUNIT - INTEGER
  226. *> The FORTRAN unit number for printing out error messages
  227. *> (e.g., if a routine returns IINFO not equal to 0.)
  228. *> Not modified.
  229. *>
  230. *> A - COMPLEX*16 array, dimension (LDA,max(NN))
  231. *> Used to hold the matrix whose eigenvalues are to be
  232. *> computed. On exit, A contains the last matrix actually
  233. *> used.
  234. *> Modified.
  235. *>
  236. *> LDA - INTEGER
  237. *> The leading dimension of A, H, T1 and T2. It must be at
  238. *> least 1 and at least max( NN ).
  239. *> Not modified.
  240. *>
  241. *> H - COMPLEX*16 array, dimension (LDA,max(NN))
  242. *> The upper hessenberg matrix computed by ZGEHRD. On exit,
  243. *> H contains the Hessenberg form of the matrix in A.
  244. *> Modified.
  245. *>
  246. *> T1 - COMPLEX*16 array, dimension (LDA,max(NN))
  247. *> The Schur (="quasi-triangular") matrix computed by ZHSEQR
  248. *> if Z is computed. On exit, T1 contains the Schur form of
  249. *> the matrix in A.
  250. *> Modified.
  251. *>
  252. *> T2 - COMPLEX*16 array, dimension (LDA,max(NN))
  253. *> The Schur matrix computed by ZHSEQR when Z is not computed.
  254. *> This should be identical to T1.
  255. *> Modified.
  256. *>
  257. *> LDU - INTEGER
  258. *> The leading dimension of U, Z, UZ and UU. It must be at
  259. *> least 1 and at least max( NN ).
  260. *> Not modified.
  261. *>
  262. *> U - COMPLEX*16 array, dimension (LDU,max(NN))
  263. *> The unitary matrix computed by ZGEHRD.
  264. *> Modified.
  265. *>
  266. *> Z - COMPLEX*16 array, dimension (LDU,max(NN))
  267. *> The unitary matrix computed by ZHSEQR.
  268. *> Modified.
  269. *>
  270. *> UZ - COMPLEX*16 array, dimension (LDU,max(NN))
  271. *> The product of U times Z.
  272. *> Modified.
  273. *>
  274. *> W1 - COMPLEX*16 array, dimension (max(NN))
  275. *> The eigenvalues of A, as computed by a full Schur
  276. *> decomposition H = Z T Z'. On exit, W1 contains the
  277. *> eigenvalues of the matrix in A.
  278. *> Modified.
  279. *>
  280. *> W3 - COMPLEX*16 array, dimension (max(NN))
  281. *> The eigenvalues of A, as computed by a partial Schur
  282. *> decomposition (Z not computed, T only computed as much
  283. *> as is necessary for determining eigenvalues). On exit,
  284. *> W3 contains the eigenvalues of the matrix in A, possibly
  285. *> perturbed by ZHSEIN.
  286. *> Modified.
  287. *>
  288. *> EVECTL - COMPLEX*16 array, dimension (LDU,max(NN))
  289. *> The conjugate transpose of the (upper triangular) left
  290. *> eigenvector matrix for the matrix in T1.
  291. *> Modified.
  292. *>
  293. *> EVEZTR - COMPLEX*16 array, dimension (LDU,max(NN))
  294. *> The (upper triangular) right eigenvector matrix for the
  295. *> matrix in T1.
  296. *> Modified.
  297. *>
  298. *> EVECTY - COMPLEX*16 array, dimension (LDU,max(NN))
  299. *> The conjugate transpose of the left eigenvector matrix
  300. *> for the matrix in H.
  301. *> Modified.
  302. *>
  303. *> EVECTX - COMPLEX*16 array, dimension (LDU,max(NN))
  304. *> The right eigenvector matrix for the matrix in H.
  305. *> Modified.
  306. *>
  307. *> UU - COMPLEX*16 array, dimension (LDU,max(NN))
  308. *> Details of the unitary matrix computed by ZGEHRD.
  309. *> Modified.
  310. *>
  311. *> TAU - COMPLEX*16 array, dimension (max(NN))
  312. *> Further details of the unitary matrix computed by ZGEHRD.
  313. *> Modified.
  314. *>
  315. *> WORK - COMPLEX*16 array, dimension (NWORK)
  316. *> Workspace.
  317. *> Modified.
  318. *>
  319. *> NWORK - INTEGER
  320. *> The number of entries in WORK. NWORK >= 4*NN(j)*NN(j) + 2.
  321. *>
  322. *> RWORK - DOUBLE PRECISION array, dimension (max(NN))
  323. *> Workspace. Could be equivalenced to IWORK, but not SELECT.
  324. *> Modified.
  325. *>
  326. *> IWORK - INTEGER array, dimension (max(NN))
  327. *> Workspace.
  328. *> Modified.
  329. *>
  330. *> SELECT - LOGICAL array, dimension (max(NN))
  331. *> Workspace. Could be equivalenced to IWORK, but not RWORK.
  332. *> Modified.
  333. *>
  334. *> RESULT - DOUBLE PRECISION array, dimension (14)
  335. *> The values computed by the fourteen tests described above.
  336. *> The values are currently limited to 1/ulp, to avoid
  337. *> overflow.
  338. *> Modified.
  339. *>
  340. *> INFO - INTEGER
  341. *> If 0, then everything ran OK.
  342. *> -1: NSIZES < 0
  343. *> -2: Some NN(j) < 0
  344. *> -3: NTYPES < 0
  345. *> -6: THRESH < 0
  346. *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
  347. *> -14: LDU < 1 or LDU < NMAX.
  348. *> -26: NWORK too small.
  349. *> If ZLATMR, CLATMS, or CLATME returns an error code, the
  350. *> absolute value of it is returned.
  351. *> If 1, then ZHSEQR could not find all the shifts.
  352. *> If 2, then the EISPACK code (for small blocks) failed.
  353. *> If >2, then 30*N iterations were not enough to find an
  354. *> eigenvalue or to decompose the problem.
  355. *> Modified.
  356. *>
  357. *>-----------------------------------------------------------------------
  358. *>
  359. *> Some Local Variables and Parameters:
  360. *> ---- ----- --------- --- ----------
  361. *>
  362. *> ZERO, ONE Real 0 and 1.
  363. *> MAXTYP The number of types defined.
  364. *> MTEST The number of tests defined: care must be taken
  365. *> that (1) the size of RESULT, (2) the number of
  366. *> tests actually performed, and (3) MTEST agree.
  367. *> NTEST The number of tests performed on this matrix
  368. *> so far. This should be less than MTEST, and
  369. *> equal to it by the last test. It will be less
  370. *> if any of the routines being tested indicates
  371. *> that it could not compute the matrices that
  372. *> would be tested.
  373. *> NMAX Largest value in NN.
  374. *> NMATS The number of matrices generated so far.
  375. *> NERRS The number of tests which have exceeded THRESH
  376. *> so far (computed by DLAFTS).
  377. *> COND, CONDS,
  378. *> IMODE Values to be passed to the matrix generators.
  379. *> ANORM Norm of A; passed to matrix generators.
  380. *>
  381. *> OVFL, UNFL Overflow and underflow thresholds.
  382. *> ULP, ULPINV Finest relative precision and its inverse.
  383. *> RTOVFL, RTUNFL,
  384. *> RTULP, RTULPI Square roots of the previous 4 values.
  385. *>
  386. *> The following four arrays decode JTYPE:
  387. *> KTYPE(j) The general type (1-10) for type "j".
  388. *> KMODE(j) The MODE value to be passed to the matrix
  389. *> generator for type "j".
  390. *> KMAGN(j) The order of magnitude ( O(1),
  391. *> O(overflow^(1/2) ), O(underflow^(1/2) )
  392. *> KCONDS(j) Selects whether CONDS is to be 1 or
  393. *> 1/sqrt(ulp). (0 means irrelevant.)
  394. *> \endverbatim
  395. *
  396. * Authors:
  397. * ========
  398. *
  399. *> \author Univ. of Tennessee
  400. *> \author Univ. of California Berkeley
  401. *> \author Univ. of Colorado Denver
  402. *> \author NAG Ltd.
  403. *
  404. *> \date December 2016
  405. *
  406. *> \ingroup complex16_eig
  407. *
  408. * =====================================================================
  409. SUBROUTINE ZCHKHS( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  410. $ NOUNIT, A, LDA, H, T1, T2, U, LDU, Z, UZ, W1,
  411. $ W3, EVECTL, EVECTR, EVECTY, EVECTX, UU, TAU,
  412. $ WORK, NWORK, RWORK, IWORK, SELECT, RESULT,
  413. $ INFO )
  414. *
  415. * -- LAPACK test routine (version 3.7.0) --
  416. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  417. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  418. * December 2016
  419. *
  420. * .. Scalar Arguments ..
  421. INTEGER INFO, LDA, LDU, NOUNIT, NSIZES, NTYPES, NWORK
  422. DOUBLE PRECISION THRESH
  423. * ..
  424. * .. Array Arguments ..
  425. LOGICAL DOTYPE( * ), SELECT( * )
  426. INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  427. DOUBLE PRECISION RESULT( 14 ), RWORK( * )
  428. COMPLEX*16 A( LDA, * ), EVECTL( LDU, * ),
  429. $ EVECTR( LDU, * ), EVECTX( LDU, * ),
  430. $ EVECTY( LDU, * ), H( LDA, * ), T1( LDA, * ),
  431. $ T2( LDA, * ), TAU( * ), U( LDU, * ),
  432. $ UU( LDU, * ), UZ( LDU, * ), W1( * ), W3( * ),
  433. $ WORK( * ), Z( LDU, * )
  434. * ..
  435. *
  436. * =====================================================================
  437. *
  438. * .. Parameters ..
  439. DOUBLE PRECISION ZERO, ONE
  440. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  441. COMPLEX*16 CZERO, CONE
  442. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
  443. $ CONE = ( 1.0D+0, 0.0D+0 ) )
  444. INTEGER MAXTYP
  445. PARAMETER ( MAXTYP = 21 )
  446. * ..
  447. * .. Local Scalars ..
  448. LOGICAL BADNN, MATCH
  449. INTEGER I, IHI, IINFO, ILO, IMODE, IN, ITYPE, J, JCOL,
  450. $ JJ, JSIZE, JTYPE, K, MTYPES, N, N1, NERRS,
  451. $ NMATS, NMAX, NTEST, NTESTT
  452. DOUBLE PRECISION ANINV, ANORM, COND, CONDS, OVFL, RTOVFL, RTULP,
  453. $ RTULPI, RTUNFL, TEMP1, TEMP2, ULP, ULPINV, UNFL
  454. * ..
  455. * .. Local Arrays ..
  456. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
  457. $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
  458. $ KTYPE( MAXTYP )
  459. DOUBLE PRECISION DUMMA( 4 )
  460. COMPLEX*16 CDUMMA( 4 )
  461. * ..
  462. * .. External Functions ..
  463. DOUBLE PRECISION DLAMCH
  464. EXTERNAL DLAMCH
  465. * ..
  466. * .. External Subroutines ..
  467. EXTERNAL DLABAD, DLAFTS, DLASUM, XERBLA, ZCOPY, ZGEHRD,
  468. $ ZGEMM, ZGET10, ZGET22, ZHSEIN, ZHSEQR, ZHST01,
  469. $ ZLACPY, ZLASET, ZLATME, ZLATMR, ZLATMS, ZTREVC,
  470. $ ZUNGHR, ZUNMHR
  471. * ..
  472. * .. Intrinsic Functions ..
  473. INTRINSIC ABS, DBLE, MAX, MIN, SQRT
  474. * ..
  475. * .. Data statements ..
  476. DATA KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
  477. DATA KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
  478. $ 3, 1, 2, 3 /
  479. DATA KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
  480. $ 1, 5, 5, 5, 4, 3, 1 /
  481. DATA KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
  482. * ..
  483. * .. Executable Statements ..
  484. *
  485. * Check for errors
  486. *
  487. NTESTT = 0
  488. INFO = 0
  489. *
  490. BADNN = .FALSE.
  491. NMAX = 0
  492. DO 10 J = 1, NSIZES
  493. NMAX = MAX( NMAX, NN( J ) )
  494. IF( NN( J ).LT.0 )
  495. $ BADNN = .TRUE.
  496. 10 CONTINUE
  497. *
  498. * Check for errors
  499. *
  500. IF( NSIZES.LT.0 ) THEN
  501. INFO = -1
  502. ELSE IF( BADNN ) THEN
  503. INFO = -2
  504. ELSE IF( NTYPES.LT.0 ) THEN
  505. INFO = -3
  506. ELSE IF( THRESH.LT.ZERO ) THEN
  507. INFO = -6
  508. ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
  509. INFO = -9
  510. ELSE IF( LDU.LE.1 .OR. LDU.LT.NMAX ) THEN
  511. INFO = -14
  512. ELSE IF( 4*NMAX*NMAX+2.GT.NWORK ) THEN
  513. INFO = -26
  514. END IF
  515. *
  516. IF( INFO.NE.0 ) THEN
  517. CALL XERBLA( 'ZCHKHS', -INFO )
  518. RETURN
  519. END IF
  520. *
  521. * Quick return if possible
  522. *
  523. IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
  524. $ RETURN
  525. *
  526. * More important constants
  527. *
  528. UNFL = DLAMCH( 'Safe minimum' )
  529. OVFL = DLAMCH( 'Overflow' )
  530. CALL DLABAD( UNFL, OVFL )
  531. ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
  532. ULPINV = ONE / ULP
  533. RTUNFL = SQRT( UNFL )
  534. RTOVFL = SQRT( OVFL )
  535. RTULP = SQRT( ULP )
  536. RTULPI = ONE / RTULP
  537. *
  538. * Loop over sizes, types
  539. *
  540. NERRS = 0
  541. NMATS = 0
  542. *
  543. DO 260 JSIZE = 1, NSIZES
  544. N = NN( JSIZE )
  545. IF( N.EQ.0 )
  546. $ GO TO 260
  547. N1 = MAX( 1, N )
  548. ANINV = ONE / DBLE( N1 )
  549. *
  550. IF( NSIZES.NE.1 ) THEN
  551. MTYPES = MIN( MAXTYP, NTYPES )
  552. ELSE
  553. MTYPES = MIN( MAXTYP+1, NTYPES )
  554. END IF
  555. *
  556. DO 250 JTYPE = 1, MTYPES
  557. IF( .NOT.DOTYPE( JTYPE ) )
  558. $ GO TO 250
  559. NMATS = NMATS + 1
  560. NTEST = 0
  561. *
  562. * Save ISEED in case of an error.
  563. *
  564. DO 20 J = 1, 4
  565. IOLDSD( J ) = ISEED( J )
  566. 20 CONTINUE
  567. *
  568. * Initialize RESULT
  569. *
  570. DO 30 J = 1, 14
  571. RESULT( J ) = ZERO
  572. 30 CONTINUE
  573. *
  574. * Compute "A"
  575. *
  576. * Control parameters:
  577. *
  578. * KMAGN KCONDS KMODE KTYPE
  579. * =1 O(1) 1 clustered 1 zero
  580. * =2 large large clustered 2 identity
  581. * =3 small exponential Jordan
  582. * =4 arithmetic diagonal, (w/ eigenvalues)
  583. * =5 random log hermitian, w/ eigenvalues
  584. * =6 random general, w/ eigenvalues
  585. * =7 random diagonal
  586. * =8 random hermitian
  587. * =9 random general
  588. * =10 random triangular
  589. *
  590. IF( MTYPES.GT.MAXTYP )
  591. $ GO TO 100
  592. *
  593. ITYPE = KTYPE( JTYPE )
  594. IMODE = KMODE( JTYPE )
  595. *
  596. * Compute norm
  597. *
  598. GO TO ( 40, 50, 60 )KMAGN( JTYPE )
  599. *
  600. 40 CONTINUE
  601. ANORM = ONE
  602. GO TO 70
  603. *
  604. 50 CONTINUE
  605. ANORM = ( RTOVFL*ULP )*ANINV
  606. GO TO 70
  607. *
  608. 60 CONTINUE
  609. ANORM = RTUNFL*N*ULPINV
  610. GO TO 70
  611. *
  612. 70 CONTINUE
  613. *
  614. CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
  615. IINFO = 0
  616. COND = ULPINV
  617. *
  618. * Special Matrices
  619. *
  620. IF( ITYPE.EQ.1 ) THEN
  621. *
  622. * Zero
  623. *
  624. IINFO = 0
  625. ELSE IF( ITYPE.EQ.2 ) THEN
  626. *
  627. * Identity
  628. *
  629. DO 80 JCOL = 1, N
  630. A( JCOL, JCOL ) = ANORM
  631. 80 CONTINUE
  632. *
  633. ELSE IF( ITYPE.EQ.3 ) THEN
  634. *
  635. * Jordan Block
  636. *
  637. DO 90 JCOL = 1, N
  638. A( JCOL, JCOL ) = ANORM
  639. IF( JCOL.GT.1 )
  640. $ A( JCOL, JCOL-1 ) = ONE
  641. 90 CONTINUE
  642. *
  643. ELSE IF( ITYPE.EQ.4 ) THEN
  644. *
  645. * Diagonal Matrix, [Eigen]values Specified
  646. *
  647. CALL ZLATMR( N, N, 'D', ISEED, 'N', WORK, IMODE, COND,
  648. $ CONE, 'T', 'N', WORK( N+1 ), 1, ONE,
  649. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  650. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  651. *
  652. ELSE IF( ITYPE.EQ.5 ) THEN
  653. *
  654. * Hermitian, eigenvalues specified
  655. *
  656. CALL ZLATMS( N, N, 'D', ISEED, 'H', RWORK, IMODE, COND,
  657. $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
  658. *
  659. ELSE IF( ITYPE.EQ.6 ) THEN
  660. *
  661. * General, eigenvalues specified
  662. *
  663. IF( KCONDS( JTYPE ).EQ.1 ) THEN
  664. CONDS = ONE
  665. ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
  666. CONDS = RTULPI
  667. ELSE
  668. CONDS = ZERO
  669. END IF
  670. *
  671. CALL ZLATME( N, 'D', ISEED, WORK, IMODE, COND, CONE,
  672. $ 'T', 'T', 'T', RWORK, 4, CONDS, N, N, ANORM,
  673. $ A, LDA, WORK( N+1 ), IINFO )
  674. *
  675. ELSE IF( ITYPE.EQ.7 ) THEN
  676. *
  677. * Diagonal, random eigenvalues
  678. *
  679. CALL ZLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
  680. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  681. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  682. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  683. *
  684. ELSE IF( ITYPE.EQ.8 ) THEN
  685. *
  686. * Hermitian, random eigenvalues
  687. *
  688. CALL ZLATMR( N, N, 'D', ISEED, 'H', WORK, 6, ONE, CONE,
  689. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  690. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  691. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  692. *
  693. ELSE IF( ITYPE.EQ.9 ) THEN
  694. *
  695. * General, random eigenvalues
  696. *
  697. CALL ZLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
  698. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  699. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  700. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  701. *
  702. ELSE IF( ITYPE.EQ.10 ) THEN
  703. *
  704. * Triangular, random eigenvalues
  705. *
  706. CALL ZLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
  707. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  708. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
  709. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  710. *
  711. ELSE
  712. *
  713. IINFO = 1
  714. END IF
  715. *
  716. IF( IINFO.NE.0 ) THEN
  717. WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
  718. $ IOLDSD
  719. INFO = ABS( IINFO )
  720. RETURN
  721. END IF
  722. *
  723. 100 CONTINUE
  724. *
  725. * Call ZGEHRD to compute H and U, do tests.
  726. *
  727. CALL ZLACPY( ' ', N, N, A, LDA, H, LDA )
  728. NTEST = 1
  729. *
  730. ILO = 1
  731. IHI = N
  732. *
  733. CALL ZGEHRD( N, ILO, IHI, H, LDA, WORK, WORK( N+1 ),
  734. $ NWORK-N, IINFO )
  735. *
  736. IF( IINFO.NE.0 ) THEN
  737. RESULT( 1 ) = ULPINV
  738. WRITE( NOUNIT, FMT = 9999 )'ZGEHRD', IINFO, N, JTYPE,
  739. $ IOLDSD
  740. INFO = ABS( IINFO )
  741. GO TO 240
  742. END IF
  743. *
  744. DO 120 J = 1, N - 1
  745. UU( J+1, J ) = CZERO
  746. DO 110 I = J + 2, N
  747. U( I, J ) = H( I, J )
  748. UU( I, J ) = H( I, J )
  749. H( I, J ) = CZERO
  750. 110 CONTINUE
  751. 120 CONTINUE
  752. CALL ZCOPY( N-1, WORK, 1, TAU, 1 )
  753. CALL ZUNGHR( N, ILO, IHI, U, LDU, WORK, WORK( N+1 ),
  754. $ NWORK-N, IINFO )
  755. NTEST = 2
  756. *
  757. CALL ZHST01( N, ILO, IHI, A, LDA, H, LDA, U, LDU, WORK,
  758. $ NWORK, RWORK, RESULT( 1 ) )
  759. *
  760. * Call ZHSEQR to compute T1, T2 and Z, do tests.
  761. *
  762. * Eigenvalues only (W3)
  763. *
  764. CALL ZLACPY( ' ', N, N, H, LDA, T2, LDA )
  765. NTEST = 3
  766. RESULT( 3 ) = ULPINV
  767. *
  768. CALL ZHSEQR( 'E', 'N', N, ILO, IHI, T2, LDA, W3, UZ, LDU,
  769. $ WORK, NWORK, IINFO )
  770. IF( IINFO.NE.0 ) THEN
  771. WRITE( NOUNIT, FMT = 9999 )'ZHSEQR(E)', IINFO, N, JTYPE,
  772. $ IOLDSD
  773. IF( IINFO.LE.N+2 ) THEN
  774. INFO = ABS( IINFO )
  775. GO TO 240
  776. END IF
  777. END IF
  778. *
  779. * Eigenvalues (W1) and Full Schur Form (T2)
  780. *
  781. CALL ZLACPY( ' ', N, N, H, LDA, T2, LDA )
  782. *
  783. CALL ZHSEQR( 'S', 'N', N, ILO, IHI, T2, LDA, W1, UZ, LDU,
  784. $ WORK, NWORK, IINFO )
  785. IF( IINFO.NE.0 .AND. IINFO.LE.N+2 ) THEN
  786. WRITE( NOUNIT, FMT = 9999 )'ZHSEQR(S)', IINFO, N, JTYPE,
  787. $ IOLDSD
  788. INFO = ABS( IINFO )
  789. GO TO 240
  790. END IF
  791. *
  792. * Eigenvalues (W1), Schur Form (T1), and Schur Vectors (UZ)
  793. *
  794. CALL ZLACPY( ' ', N, N, H, LDA, T1, LDA )
  795. CALL ZLACPY( ' ', N, N, U, LDU, UZ, LDU )
  796. *
  797. CALL ZHSEQR( 'S', 'V', N, ILO, IHI, T1, LDA, W1, UZ, LDU,
  798. $ WORK, NWORK, IINFO )
  799. IF( IINFO.NE.0 .AND. IINFO.LE.N+2 ) THEN
  800. WRITE( NOUNIT, FMT = 9999 )'ZHSEQR(V)', IINFO, N, JTYPE,
  801. $ IOLDSD
  802. INFO = ABS( IINFO )
  803. GO TO 240
  804. END IF
  805. *
  806. * Compute Z = U' UZ
  807. *
  808. CALL ZGEMM( 'C', 'N', N, N, N, CONE, U, LDU, UZ, LDU, CZERO,
  809. $ Z, LDU )
  810. NTEST = 8
  811. *
  812. * Do Tests 3: | H - Z T Z' | / ( |H| n ulp )
  813. * and 4: | I - Z Z' | / ( n ulp )
  814. *
  815. CALL ZHST01( N, ILO, IHI, H, LDA, T1, LDA, Z, LDU, WORK,
  816. $ NWORK, RWORK, RESULT( 3 ) )
  817. *
  818. * Do Tests 5: | A - UZ T (UZ)' | / ( |A| n ulp )
  819. * and 6: | I - UZ (UZ)' | / ( n ulp )
  820. *
  821. CALL ZHST01( N, ILO, IHI, A, LDA, T1, LDA, UZ, LDU, WORK,
  822. $ NWORK, RWORK, RESULT( 5 ) )
  823. *
  824. * Do Test 7: | T2 - T1 | / ( |T| n ulp )
  825. *
  826. CALL ZGET10( N, N, T2, LDA, T1, LDA, WORK, RWORK,
  827. $ RESULT( 7 ) )
  828. *
  829. * Do Test 8: | W3 - W1 | / ( max(|W1|,|W3|) ulp )
  830. *
  831. TEMP1 = ZERO
  832. TEMP2 = ZERO
  833. DO 130 J = 1, N
  834. TEMP1 = MAX( TEMP1, ABS( W1( J ) ), ABS( W3( J ) ) )
  835. TEMP2 = MAX( TEMP2, ABS( W1( J )-W3( J ) ) )
  836. 130 CONTINUE
  837. *
  838. RESULT( 8 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
  839. *
  840. * Compute the Left and Right Eigenvectors of T
  841. *
  842. * Compute the Right eigenvector Matrix:
  843. *
  844. NTEST = 9
  845. RESULT( 9 ) = ULPINV
  846. *
  847. * Select every other eigenvector
  848. *
  849. DO 140 J = 1, N
  850. SELECT( J ) = .FALSE.
  851. 140 CONTINUE
  852. DO 150 J = 1, N, 2
  853. SELECT( J ) = .TRUE.
  854. 150 CONTINUE
  855. CALL ZTREVC( 'Right', 'All', SELECT, N, T1, LDA, CDUMMA,
  856. $ LDU, EVECTR, LDU, N, IN, WORK, RWORK, IINFO )
  857. IF( IINFO.NE.0 ) THEN
  858. WRITE( NOUNIT, FMT = 9999 )'ZTREVC(R,A)', IINFO, N,
  859. $ JTYPE, IOLDSD
  860. INFO = ABS( IINFO )
  861. GO TO 240
  862. END IF
  863. *
  864. * Test 9: | TR - RW | / ( |T| |R| ulp )
  865. *
  866. CALL ZGET22( 'N', 'N', 'N', N, T1, LDA, EVECTR, LDU, W1,
  867. $ WORK, RWORK, DUMMA( 1 ) )
  868. RESULT( 9 ) = DUMMA( 1 )
  869. IF( DUMMA( 2 ).GT.THRESH ) THEN
  870. WRITE( NOUNIT, FMT = 9998 )'Right', 'ZTREVC',
  871. $ DUMMA( 2 ), N, JTYPE, IOLDSD
  872. END IF
  873. *
  874. * Compute selected right eigenvectors and confirm that
  875. * they agree with previous right eigenvectors
  876. *
  877. CALL ZTREVC( 'Right', 'Some', SELECT, N, T1, LDA, CDUMMA,
  878. $ LDU, EVECTL, LDU, N, IN, WORK, RWORK, IINFO )
  879. IF( IINFO.NE.0 ) THEN
  880. WRITE( NOUNIT, FMT = 9999 )'ZTREVC(R,S)', IINFO, N,
  881. $ JTYPE, IOLDSD
  882. INFO = ABS( IINFO )
  883. GO TO 240
  884. END IF
  885. *
  886. K = 1
  887. MATCH = .TRUE.
  888. DO 170 J = 1, N
  889. IF( SELECT( J ) ) THEN
  890. DO 160 JJ = 1, N
  891. IF( EVECTR( JJ, J ).NE.EVECTL( JJ, K ) ) THEN
  892. MATCH = .FALSE.
  893. GO TO 180
  894. END IF
  895. 160 CONTINUE
  896. K = K + 1
  897. END IF
  898. 170 CONTINUE
  899. 180 CONTINUE
  900. IF( .NOT.MATCH )
  901. $ WRITE( NOUNIT, FMT = 9997 )'Right', 'ZTREVC', N, JTYPE,
  902. $ IOLDSD
  903. *
  904. * Compute the Left eigenvector Matrix:
  905. *
  906. NTEST = 10
  907. RESULT( 10 ) = ULPINV
  908. CALL ZTREVC( 'Left', 'All', SELECT, N, T1, LDA, EVECTL, LDU,
  909. $ CDUMMA, LDU, N, IN, WORK, RWORK, IINFO )
  910. IF( IINFO.NE.0 ) THEN
  911. WRITE( NOUNIT, FMT = 9999 )'ZTREVC(L,A)', IINFO, N,
  912. $ JTYPE, IOLDSD
  913. INFO = ABS( IINFO )
  914. GO TO 240
  915. END IF
  916. *
  917. * Test 10: | LT - WL | / ( |T| |L| ulp )
  918. *
  919. CALL ZGET22( 'C', 'N', 'C', N, T1, LDA, EVECTL, LDU, W1,
  920. $ WORK, RWORK, DUMMA( 3 ) )
  921. RESULT( 10 ) = DUMMA( 3 )
  922. IF( DUMMA( 4 ).GT.THRESH ) THEN
  923. WRITE( NOUNIT, FMT = 9998 )'Left', 'ZTREVC', DUMMA( 4 ),
  924. $ N, JTYPE, IOLDSD
  925. END IF
  926. *
  927. * Compute selected left eigenvectors and confirm that
  928. * they agree with previous left eigenvectors
  929. *
  930. CALL ZTREVC( 'Left', 'Some', SELECT, N, T1, LDA, EVECTR,
  931. $ LDU, CDUMMA, LDU, N, IN, WORK, RWORK, IINFO )
  932. IF( IINFO.NE.0 ) THEN
  933. WRITE( NOUNIT, FMT = 9999 )'ZTREVC(L,S)', IINFO, N,
  934. $ JTYPE, IOLDSD
  935. INFO = ABS( IINFO )
  936. GO TO 240
  937. END IF
  938. *
  939. K = 1
  940. MATCH = .TRUE.
  941. DO 200 J = 1, N
  942. IF( SELECT( J ) ) THEN
  943. DO 190 JJ = 1, N
  944. IF( EVECTL( JJ, J ).NE.EVECTR( JJ, K ) ) THEN
  945. MATCH = .FALSE.
  946. GO TO 210
  947. END IF
  948. 190 CONTINUE
  949. K = K + 1
  950. END IF
  951. 200 CONTINUE
  952. 210 CONTINUE
  953. IF( .NOT.MATCH )
  954. $ WRITE( NOUNIT, FMT = 9997 )'Left', 'ZTREVC', N, JTYPE,
  955. $ IOLDSD
  956. *
  957. * Call ZHSEIN for Right eigenvectors of H, do test 11
  958. *
  959. NTEST = 11
  960. RESULT( 11 ) = ULPINV
  961. DO 220 J = 1, N
  962. SELECT( J ) = .TRUE.
  963. 220 CONTINUE
  964. *
  965. CALL ZHSEIN( 'Right', 'Qr', 'Ninitv', SELECT, N, H, LDA, W3,
  966. $ CDUMMA, LDU, EVECTX, LDU, N1, IN, WORK, RWORK,
  967. $ IWORK, IWORK, IINFO )
  968. IF( IINFO.NE.0 ) THEN
  969. WRITE( NOUNIT, FMT = 9999 )'ZHSEIN(R)', IINFO, N, JTYPE,
  970. $ IOLDSD
  971. INFO = ABS( IINFO )
  972. IF( IINFO.LT.0 )
  973. $ GO TO 240
  974. ELSE
  975. *
  976. * Test 11: | HX - XW | / ( |H| |X| ulp )
  977. *
  978. * (from inverse iteration)
  979. *
  980. CALL ZGET22( 'N', 'N', 'N', N, H, LDA, EVECTX, LDU, W3,
  981. $ WORK, RWORK, DUMMA( 1 ) )
  982. IF( DUMMA( 1 ).LT.ULPINV )
  983. $ RESULT( 11 ) = DUMMA( 1 )*ANINV
  984. IF( DUMMA( 2 ).GT.THRESH ) THEN
  985. WRITE( NOUNIT, FMT = 9998 )'Right', 'ZHSEIN',
  986. $ DUMMA( 2 ), N, JTYPE, IOLDSD
  987. END IF
  988. END IF
  989. *
  990. * Call ZHSEIN for Left eigenvectors of H, do test 12
  991. *
  992. NTEST = 12
  993. RESULT( 12 ) = ULPINV
  994. DO 230 J = 1, N
  995. SELECT( J ) = .TRUE.
  996. 230 CONTINUE
  997. *
  998. CALL ZHSEIN( 'Left', 'Qr', 'Ninitv', SELECT, N, H, LDA, W3,
  999. $ EVECTY, LDU, CDUMMA, LDU, N1, IN, WORK, RWORK,
  1000. $ IWORK, IWORK, IINFO )
  1001. IF( IINFO.NE.0 ) THEN
  1002. WRITE( NOUNIT, FMT = 9999 )'ZHSEIN(L)', IINFO, N, JTYPE,
  1003. $ IOLDSD
  1004. INFO = ABS( IINFO )
  1005. IF( IINFO.LT.0 )
  1006. $ GO TO 240
  1007. ELSE
  1008. *
  1009. * Test 12: | YH - WY | / ( |H| |Y| ulp )
  1010. *
  1011. * (from inverse iteration)
  1012. *
  1013. CALL ZGET22( 'C', 'N', 'C', N, H, LDA, EVECTY, LDU, W3,
  1014. $ WORK, RWORK, DUMMA( 3 ) )
  1015. IF( DUMMA( 3 ).LT.ULPINV )
  1016. $ RESULT( 12 ) = DUMMA( 3 )*ANINV
  1017. IF( DUMMA( 4 ).GT.THRESH ) THEN
  1018. WRITE( NOUNIT, FMT = 9998 )'Left', 'ZHSEIN',
  1019. $ DUMMA( 4 ), N, JTYPE, IOLDSD
  1020. END IF
  1021. END IF
  1022. *
  1023. * Call ZUNMHR for Right eigenvectors of A, do test 13
  1024. *
  1025. NTEST = 13
  1026. RESULT( 13 ) = ULPINV
  1027. *
  1028. CALL ZUNMHR( 'Left', 'No transpose', N, N, ILO, IHI, UU,
  1029. $ LDU, TAU, EVECTX, LDU, WORK, NWORK, IINFO )
  1030. IF( IINFO.NE.0 ) THEN
  1031. WRITE( NOUNIT, FMT = 9999 )'ZUNMHR(L)', IINFO, N, JTYPE,
  1032. $ IOLDSD
  1033. INFO = ABS( IINFO )
  1034. IF( IINFO.LT.0 )
  1035. $ GO TO 240
  1036. ELSE
  1037. *
  1038. * Test 13: | AX - XW | / ( |A| |X| ulp )
  1039. *
  1040. * (from inverse iteration)
  1041. *
  1042. CALL ZGET22( 'N', 'N', 'N', N, A, LDA, EVECTX, LDU, W3,
  1043. $ WORK, RWORK, DUMMA( 1 ) )
  1044. IF( DUMMA( 1 ).LT.ULPINV )
  1045. $ RESULT( 13 ) = DUMMA( 1 )*ANINV
  1046. END IF
  1047. *
  1048. * Call ZUNMHR for Left eigenvectors of A, do test 14
  1049. *
  1050. NTEST = 14
  1051. RESULT( 14 ) = ULPINV
  1052. *
  1053. CALL ZUNMHR( 'Left', 'No transpose', N, N, ILO, IHI, UU,
  1054. $ LDU, TAU, EVECTY, LDU, WORK, NWORK, IINFO )
  1055. IF( IINFO.NE.0 ) THEN
  1056. WRITE( NOUNIT, FMT = 9999 )'ZUNMHR(L)', IINFO, N, JTYPE,
  1057. $ IOLDSD
  1058. INFO = ABS( IINFO )
  1059. IF( IINFO.LT.0 )
  1060. $ GO TO 240
  1061. ELSE
  1062. *
  1063. * Test 14: | YA - WY | / ( |A| |Y| ulp )
  1064. *
  1065. * (from inverse iteration)
  1066. *
  1067. CALL ZGET22( 'C', 'N', 'C', N, A, LDA, EVECTY, LDU, W3,
  1068. $ WORK, RWORK, DUMMA( 3 ) )
  1069. IF( DUMMA( 3 ).LT.ULPINV )
  1070. $ RESULT( 14 ) = DUMMA( 3 )*ANINV
  1071. END IF
  1072. *
  1073. * End of Loop -- Check for RESULT(j) > THRESH
  1074. *
  1075. 240 CONTINUE
  1076. *
  1077. NTESTT = NTESTT + NTEST
  1078. CALL DLAFTS( 'ZHS', N, N, JTYPE, NTEST, RESULT, IOLDSD,
  1079. $ THRESH, NOUNIT, NERRS )
  1080. *
  1081. 250 CONTINUE
  1082. 260 CONTINUE
  1083. *
  1084. * Summary
  1085. *
  1086. CALL DLASUM( 'ZHS', NOUNIT, NERRS, NTESTT )
  1087. *
  1088. RETURN
  1089. *
  1090. 9999 FORMAT( ' ZCHKHS: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
  1091. $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  1092. 9998 FORMAT( ' ZCHKHS: ', A, ' Eigenvectors from ', A, ' incorrectly ',
  1093. $ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X,
  1094. $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
  1095. $ ')' )
  1096. 9997 FORMAT( ' ZCHKHS: Selected ', A, ' Eigenvectors from ', A,
  1097. $ ' do not match other eigenvectors ', 9X, 'N=', I6,
  1098. $ ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  1099. *
  1100. * End of ZCHKHS
  1101. *
  1102. END