You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zbdt05.f 5.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. *> \brief \b ZBDT05
  2. * =========== DOCUMENTATION ===========
  3. *
  4. * Online html documentation available at
  5. * http://www.netlib.org/lapack/explore-html/
  6. *
  7. * Definition:
  8. * ===========
  9. *
  10. * SUBROUTINE ZBDT05( M, N, A, LDA, S, NS, U, LDU,
  11. * VT, LDVT, WORK, RESID )
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER LDA, LDU, LDVT, N, NS
  15. * DOUBLE PRECISION RESID
  16. * ..
  17. * .. Array Arguments ..
  18. * DOUBLE PRECISION S( * )
  19. * COMPLEX*16 A( LDA, * ), U( * ), VT( LDVT, * ), WORK( * )
  20. * ..
  21. *
  22. *> \par Purpose:
  23. * =============
  24. *>
  25. *> \verbatim
  26. *>
  27. *> ZBDT05 reconstructs a bidiagonal matrix B from its (partial) SVD:
  28. *> S = U' * B * V
  29. *> where U and V are orthogonal matrices and S is diagonal.
  30. *>
  31. *> The test ratio to test the singular value decomposition is
  32. *> RESID = norm( S - U' * B * V ) / ( n * norm(B) * EPS )
  33. *> where VT = V' and EPS is the machine precision.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] M
  40. *> \verbatim
  41. *> M is INTEGER
  42. *> The number of rows of the matrices A and U.
  43. *> \endverbatim
  44. *>
  45. *> \param[in] N
  46. *> \verbatim
  47. *> N is INTEGER
  48. *> The number of columns of the matrices A and VT.
  49. *> \endverbatim
  50. *>
  51. *> \param[in] A
  52. *> \verbatim
  53. *> A is COMPLEX*16 array, dimension (LDA,N)
  54. *> The m by n matrix A.
  55. *>
  56. *> \param[in] LDA
  57. *> \verbatim
  58. *> LDA is INTEGER
  59. *> The leading dimension of the array A. LDA >= max(1,M).
  60. *> \endverbatim
  61. *>
  62. *> \param[in] S
  63. *> \verbatim
  64. *> S is DOUBLE PRECISION array, dimension (NS)
  65. *> The singular values from the (partial) SVD of B, sorted in
  66. *> decreasing order.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] NS
  70. *> \verbatim
  71. *> NS is INTEGER
  72. *> The number of singular values/vectors from the (partial)
  73. *> SVD of B.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] U
  77. *> \verbatim
  78. *> U is COMPLEX*16 array, dimension (LDU,NS)
  79. *> The n by ns orthogonal matrix U in S = U' * B * V.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] LDU
  83. *> \verbatim
  84. *> LDU is INTEGER
  85. *> The leading dimension of the array U. LDU >= max(1,N)
  86. *> \endverbatim
  87. *>
  88. *> \param[in] VT
  89. *> \verbatim
  90. *> VT is COMPLEX*16 array, dimension (LDVT,N)
  91. *> The n by ns orthogonal matrix V in S = U' * B * V.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LDVT
  95. *> \verbatim
  96. *> LDVT is INTEGER
  97. *> The leading dimension of the array VT.
  98. *> \endverbatim
  99. *>
  100. *> \param[out] WORK
  101. *> \verbatim
  102. *> WORK is COMPLEX*16 array, dimension (M,N)
  103. *> \endverbatim
  104. *>
  105. *> \param[out] RESID
  106. *> \verbatim
  107. *> RESID is DOUBLE PRECISION
  108. *> The test ratio: norm(S - U' * A * V) / ( n * norm(A) * EPS )
  109. *> \endverbatim
  110. *
  111. * Authors:
  112. * ========
  113. *
  114. *> \author Univ. of Tennessee
  115. *> \author Univ. of California Berkeley
  116. *> \author Univ. of Colorado Denver
  117. *> \author NAG Ltd.
  118. *
  119. *> \date December 2016
  120. *
  121. *> \ingroup double_eig
  122. *
  123. * =====================================================================
  124. SUBROUTINE ZBDT05( M, N, A, LDA, S, NS, U, LDU,
  125. $ VT, LDVT, WORK, RESID )
  126. *
  127. * -- LAPACK test routine (version 3.7.0) --
  128. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  129. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  130. * December 2016
  131. *
  132. * .. Scalar Arguments ..
  133. INTEGER LDA, LDU, LDVT, M, N, NS
  134. DOUBLE PRECISION RESID
  135. * ..
  136. * .. Array Arguments ..
  137. DOUBLE PRECISION S( * )
  138. COMPLEX*16 A( LDA, * ), U( * ), VT( LDVT, * ), WORK( * )
  139. * ..
  140. *
  141. * ======================================================================
  142. *
  143. * .. Parameters ..
  144. DOUBLE PRECISION ZERO, ONE
  145. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  146. COMPLEX*16 CZERO, CONE
  147. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
  148. $ CONE = ( 1.0D+0, 0.0D+0 ) )
  149. * ..
  150. * .. Local Scalars ..
  151. INTEGER I, J
  152. DOUBLE PRECISION ANORM, EPS
  153. * ..
  154. * .. Local Arrays ..
  155. DOUBLE PRECISION DUM( 1 )
  156. * ..
  157. * .. External Functions ..
  158. LOGICAL LSAME
  159. INTEGER IDAMAX
  160. DOUBLE PRECISION DASUM, DLAMCH, ZLANGE
  161. EXTERNAL LSAME, IDAMAX, DASUM, DLAMCH, ZLANGE
  162. DOUBLE PRECISION DZASUM
  163. * ..
  164. * .. External Subroutines ..
  165. EXTERNAL ZGEMM
  166. * ..
  167. * .. Intrinsic Functions ..
  168. INTRINSIC ABS, DBLE, MAX, MIN
  169. * ..
  170. * .. Executable Statements ..
  171. *
  172. * Quick return if possible.
  173. *
  174. RESID = ZERO
  175. IF( MIN( M, N ).LE.0 .OR. NS.LE.0 )
  176. $ RETURN
  177. *
  178. EPS = DLAMCH( 'Precision' )
  179. ANORM = ZLANGE( 'M', M, N, A, LDA, DUM )
  180. *
  181. * Compute U' * A * V.
  182. *
  183. CALL ZGEMM( 'N', 'C', M, NS, N, CONE, A, LDA, VT,
  184. $ LDVT, CZERO, WORK( 1+NS*NS ), M )
  185. CALL ZGEMM( 'C', 'N', NS, NS, M, -CONE, U, LDU, WORK( 1+NS*NS ),
  186. $ M, CZERO, WORK, NS )
  187. *
  188. * norm(S - U' * B * V)
  189. *
  190. J = 0
  191. DO 10 I = 1, NS
  192. WORK( J+I ) = WORK( J+I ) + DCMPLX( S( I ), ZERO )
  193. RESID = MAX( RESID, DZASUM( NS, WORK( J+1 ), 1 ) )
  194. J = J + NS
  195. 10 CONTINUE
  196. *
  197. IF( ANORM.LE.ZERO ) THEN
  198. IF( RESID.NE.ZERO )
  199. $ RESID = ONE / EPS
  200. ELSE
  201. IF( ANORM.GE.RESID ) THEN
  202. RESID = ( RESID / ANORM ) / ( DBLE( N )*EPS )
  203. ELSE
  204. IF( ANORM.LT.ONE ) THEN
  205. RESID = ( MIN( RESID, DBLE( N )*ANORM ) / ANORM ) /
  206. $ ( DBLE( N )*EPS )
  207. ELSE
  208. RESID = MIN( RESID / ANORM, DBLE( N ) ) /
  209. $ ( DBLE( N )*EPS )
  210. END IF
  211. END IF
  212. END IF
  213. *
  214. RETURN
  215. *
  216. * End of ZBDT05
  217. *
  218. END