You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ddrvev.f 34 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
  1. *> \brief \b DDRVEV
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DDRVEV( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  12. * NOUNIT, A, LDA, H, WR, WI, WR1, WI1, VL, LDVL,
  13. * VR, LDVR, LRE, LDLRE, RESULT, WORK, NWORK,
  14. * IWORK, INFO )
  15. *
  16. * .. Scalar Arguments ..
  17. * INTEGER INFO, LDA, LDLRE, LDVL, LDVR, NOUNIT, NSIZES,
  18. * $ NTYPES, NWORK
  19. * DOUBLE PRECISION THRESH
  20. * ..
  21. * .. Array Arguments ..
  22. * LOGICAL DOTYPE( * )
  23. * INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  24. * DOUBLE PRECISION A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
  25. * $ RESULT( 7 ), VL( LDVL, * ), VR( LDVR, * ),
  26. * $ WI( * ), WI1( * ), WORK( * ), WR( * ), WR1( * )
  27. * ..
  28. *
  29. *
  30. *> \par Purpose:
  31. * =============
  32. *>
  33. *> \verbatim
  34. *>
  35. *> DDRVEV checks the nonsymmetric eigenvalue problem driver DGEEV.
  36. *>
  37. *> When DDRVEV is called, a number of matrix "sizes" ("n's") and a
  38. *> number of matrix "types" are specified. For each size ("n")
  39. *> and each type of matrix, one matrix will be generated and used
  40. *> to test the nonsymmetric eigenroutines. For each matrix, 7
  41. *> tests will be performed:
  42. *>
  43. *> (1) | A * VR - VR * W | / ( n |A| ulp )
  44. *>
  45. *> Here VR is the matrix of unit right eigenvectors.
  46. *> W is a block diagonal matrix, with a 1x1 block for each
  47. *> real eigenvalue and a 2x2 block for each complex conjugate
  48. *> pair. If eigenvalues j and j+1 are a complex conjugate pair,
  49. *> so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the
  50. *> 2 x 2 block corresponding to the pair will be:
  51. *>
  52. *> ( wr wi )
  53. *> ( -wi wr )
  54. *>
  55. *> Such a block multiplying an n x 2 matrix ( ur ui ) on the
  56. *> right will be the same as multiplying ur + i*ui by wr + i*wi.
  57. *>
  58. *> (2) | A**H * VL - VL * W**H | / ( n |A| ulp )
  59. *>
  60. *> Here VL is the matrix of unit left eigenvectors, A**H is the
  61. *> conjugate transpose of A, and W is as above.
  62. *>
  63. *> (3) | |VR(i)| - 1 | / ulp and whether largest component real
  64. *>
  65. *> VR(i) denotes the i-th column of VR.
  66. *>
  67. *> (4) | |VL(i)| - 1 | / ulp and whether largest component real
  68. *>
  69. *> VL(i) denotes the i-th column of VL.
  70. *>
  71. *> (5) W(full) = W(partial)
  72. *>
  73. *> W(full) denotes the eigenvalues computed when both VR and VL
  74. *> are also computed, and W(partial) denotes the eigenvalues
  75. *> computed when only W, only W and VR, or only W and VL are
  76. *> computed.
  77. *>
  78. *> (6) VR(full) = VR(partial)
  79. *>
  80. *> VR(full) denotes the right eigenvectors computed when both VR
  81. *> and VL are computed, and VR(partial) denotes the result
  82. *> when only VR is computed.
  83. *>
  84. *> (7) VL(full) = VL(partial)
  85. *>
  86. *> VL(full) denotes the left eigenvectors computed when both VR
  87. *> and VL are also computed, and VL(partial) denotes the result
  88. *> when only VL is computed.
  89. *>
  90. *> The "sizes" are specified by an array NN(1:NSIZES); the value of
  91. *> each element NN(j) specifies one size.
  92. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
  93. *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
  94. *> Currently, the list of possible types is:
  95. *>
  96. *> (1) The zero matrix.
  97. *> (2) The identity matrix.
  98. *> (3) A (transposed) Jordan block, with 1's on the diagonal.
  99. *>
  100. *> (4) A diagonal matrix with evenly spaced entries
  101. *> 1, ..., ULP and random signs.
  102. *> (ULP = (first number larger than 1) - 1 )
  103. *> (5) A diagonal matrix with geometrically spaced entries
  104. *> 1, ..., ULP and random signs.
  105. *> (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
  106. *> and random signs.
  107. *>
  108. *> (7) Same as (4), but multiplied by a constant near
  109. *> the overflow threshold
  110. *> (8) Same as (4), but multiplied by a constant near
  111. *> the underflow threshold
  112. *>
  113. *> (9) A matrix of the form U' T U, where U is orthogonal and
  114. *> T has evenly spaced entries 1, ..., ULP with random signs
  115. *> on the diagonal and random O(1) entries in the upper
  116. *> triangle.
  117. *>
  118. *> (10) A matrix of the form U' T U, where U is orthogonal and
  119. *> T has geometrically spaced entries 1, ..., ULP with random
  120. *> signs on the diagonal and random O(1) entries in the upper
  121. *> triangle.
  122. *>
  123. *> (11) A matrix of the form U' T U, where U is orthogonal and
  124. *> T has "clustered" entries 1, ULP,..., ULP with random
  125. *> signs on the diagonal and random O(1) entries in the upper
  126. *> triangle.
  127. *>
  128. *> (12) A matrix of the form U' T U, where U is orthogonal and
  129. *> T has real or complex conjugate paired eigenvalues randomly
  130. *> chosen from ( ULP, 1 ) and random O(1) entries in the upper
  131. *> triangle.
  132. *>
  133. *> (13) A matrix of the form X' T X, where X has condition
  134. *> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
  135. *> with random signs on the diagonal and random O(1) entries
  136. *> in the upper triangle.
  137. *>
  138. *> (14) A matrix of the form X' T X, where X has condition
  139. *> SQRT( ULP ) and T has geometrically spaced entries
  140. *> 1, ..., ULP with random signs on the diagonal and random
  141. *> O(1) entries in the upper triangle.
  142. *>
  143. *> (15) A matrix of the form X' T X, where X has condition
  144. *> SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
  145. *> with random signs on the diagonal and random O(1) entries
  146. *> in the upper triangle.
  147. *>
  148. *> (16) A matrix of the form X' T X, where X has condition
  149. *> SQRT( ULP ) and T has real or complex conjugate paired
  150. *> eigenvalues randomly chosen from ( ULP, 1 ) and random
  151. *> O(1) entries in the upper triangle.
  152. *>
  153. *> (17) Same as (16), but multiplied by a constant
  154. *> near the overflow threshold
  155. *> (18) Same as (16), but multiplied by a constant
  156. *> near the underflow threshold
  157. *>
  158. *> (19) Nonsymmetric matrix with random entries chosen from (-1,1).
  159. *> If N is at least 4, all entries in first two rows and last
  160. *> row, and first column and last two columns are zero.
  161. *> (20) Same as (19), but multiplied by a constant
  162. *> near the overflow threshold
  163. *> (21) Same as (19), but multiplied by a constant
  164. *> near the underflow threshold
  165. *> \endverbatim
  166. *
  167. * Arguments:
  168. * ==========
  169. *
  170. *> \param[in] NSIZES
  171. *> \verbatim
  172. *> NSIZES is INTEGER
  173. *> The number of sizes of matrices to use. If it is zero,
  174. *> DDRVEV does nothing. It must be at least zero.
  175. *> \endverbatim
  176. *>
  177. *> \param[in] NN
  178. *> \verbatim
  179. *> NN is INTEGER array, dimension (NSIZES)
  180. *> An array containing the sizes to be used for the matrices.
  181. *> Zero values will be skipped. The values must be at least
  182. *> zero.
  183. *> \endverbatim
  184. *>
  185. *> \param[in] NTYPES
  186. *> \verbatim
  187. *> NTYPES is INTEGER
  188. *> The number of elements in DOTYPE. If it is zero, DDRVEV
  189. *> does nothing. It must be at least zero. If it is MAXTYP+1
  190. *> and NSIZES is 1, then an additional type, MAXTYP+1 is
  191. *> defined, which is to use whatever matrix is in A. This
  192. *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
  193. *> DOTYPE(MAXTYP+1) is .TRUE. .
  194. *> \endverbatim
  195. *>
  196. *> \param[in] DOTYPE
  197. *> \verbatim
  198. *> DOTYPE is LOGICAL array, dimension (NTYPES)
  199. *> If DOTYPE(j) is .TRUE., then for each size in NN a
  200. *> matrix of that size and of type j will be generated.
  201. *> If NTYPES is smaller than the maximum number of types
  202. *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
  203. *> MAXTYP will not be generated. If NTYPES is larger
  204. *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
  205. *> will be ignored.
  206. *> \endverbatim
  207. *>
  208. *> \param[in,out] ISEED
  209. *> \verbatim
  210. *> ISEED is INTEGER array, dimension (4)
  211. *> On entry ISEED specifies the seed of the random number
  212. *> generator. The array elements should be between 0 and 4095;
  213. *> if not they will be reduced mod 4096. Also, ISEED(4) must
  214. *> be odd. The random number generator uses a linear
  215. *> congruential sequence limited to small integers, and so
  216. *> should produce machine independent random numbers. The
  217. *> values of ISEED are changed on exit, and can be used in the
  218. *> next call to DDRVEV to continue the same random number
  219. *> sequence.
  220. *> \endverbatim
  221. *>
  222. *> \param[in] THRESH
  223. *> \verbatim
  224. *> THRESH is DOUBLE PRECISION
  225. *> A test will count as "failed" if the "error", computed as
  226. *> described above, exceeds THRESH. Note that the error
  227. *> is scaled to be O(1), so THRESH should be a reasonably
  228. *> small multiple of 1, e.g., 10 or 100. In particular,
  229. *> it should not depend on the precision (single vs. double)
  230. *> or the size of the matrix. It must be at least zero.
  231. *> \endverbatim
  232. *>
  233. *> \param[in] NOUNIT
  234. *> \verbatim
  235. *> NOUNIT is INTEGER
  236. *> The FORTRAN unit number for printing out error messages
  237. *> (e.g., if a routine returns INFO not equal to 0.)
  238. *> \endverbatim
  239. *>
  240. *> \param[out] A
  241. *> \verbatim
  242. *> A is DOUBLE PRECISION array, dimension (LDA, max(NN))
  243. *> Used to hold the matrix whose eigenvalues are to be
  244. *> computed. On exit, A contains the last matrix actually used.
  245. *> \endverbatim
  246. *>
  247. *> \param[in] LDA
  248. *> \verbatim
  249. *> LDA is INTEGER
  250. *> The leading dimension of A, and H. LDA must be at
  251. *> least 1 and at least max(NN).
  252. *> \endverbatim
  253. *>
  254. *> \param[out] H
  255. *> \verbatim
  256. *> H is DOUBLE PRECISION array, dimension (LDA, max(NN))
  257. *> Another copy of the test matrix A, modified by DGEEV.
  258. *> \endverbatim
  259. *>
  260. *> \param[out] WR
  261. *> \verbatim
  262. *> WR is DOUBLE PRECISION array, dimension (max(NN))
  263. *> \endverbatim
  264. *>
  265. *> \param[out] WI
  266. *> \verbatim
  267. *> WI is DOUBLE PRECISION array, dimension (max(NN))
  268. *>
  269. *> The real and imaginary parts of the eigenvalues of A.
  270. *> On exit, WR + WI*i are the eigenvalues of the matrix in A.
  271. *> \endverbatim
  272. *>
  273. *> \param[out] WR1
  274. *> \verbatim
  275. *> WR1 is DOUBLE PRECISION array, dimension (max(NN))
  276. *> \endverbatim
  277. *>
  278. *> \param[out] WI1
  279. *> \verbatim
  280. *> WI1 is DOUBLE PRECISION array, dimension (max(NN))
  281. *>
  282. *> Like WR, WI, these arrays contain the eigenvalues of A,
  283. *> but those computed when DGEEV only computes a partial
  284. *> eigendecomposition, i.e. not the eigenvalues and left
  285. *> and right eigenvectors.
  286. *> \endverbatim
  287. *>
  288. *> \param[out] VL
  289. *> \verbatim
  290. *> VL is DOUBLE PRECISION array, dimension (LDVL, max(NN))
  291. *> VL holds the computed left eigenvectors.
  292. *> \endverbatim
  293. *>
  294. *> \param[in] LDVL
  295. *> \verbatim
  296. *> LDVL is INTEGER
  297. *> Leading dimension of VL. Must be at least max(1,max(NN)).
  298. *> \endverbatim
  299. *>
  300. *> \param[out] VR
  301. *> \verbatim
  302. *> VR is DOUBLE PRECISION array, dimension (LDVR, max(NN))
  303. *> VR holds the computed right eigenvectors.
  304. *> \endverbatim
  305. *>
  306. *> \param[in] LDVR
  307. *> \verbatim
  308. *> LDVR is INTEGER
  309. *> Leading dimension of VR. Must be at least max(1,max(NN)).
  310. *> \endverbatim
  311. *>
  312. *> \param[out] LRE
  313. *> \verbatim
  314. *> LRE is DOUBLE PRECISION array, dimension (LDLRE,max(NN))
  315. *> LRE holds the computed right or left eigenvectors.
  316. *> \endverbatim
  317. *>
  318. *> \param[in] LDLRE
  319. *> \verbatim
  320. *> LDLRE is INTEGER
  321. *> Leading dimension of LRE. Must be at least max(1,max(NN)).
  322. *> \endverbatim
  323. *>
  324. *> \param[out] RESULT
  325. *> \verbatim
  326. *> RESULT is DOUBLE PRECISION array, dimension (7)
  327. *> The values computed by the seven tests described above.
  328. *> The values are currently limited to 1/ulp, to avoid overflow.
  329. *> \endverbatim
  330. *>
  331. *> \param[out] WORK
  332. *> \verbatim
  333. *> WORK is DOUBLE PRECISION array, dimension (NWORK)
  334. *> \endverbatim
  335. *>
  336. *> \param[in] NWORK
  337. *> \verbatim
  338. *> NWORK is INTEGER
  339. *> The number of entries in WORK. This must be at least
  340. *> 5*NN(j)+2*NN(j)**2 for all j.
  341. *> \endverbatim
  342. *>
  343. *> \param[out] IWORK
  344. *> \verbatim
  345. *> IWORK is INTEGER array, dimension (max(NN))
  346. *> \endverbatim
  347. *>
  348. *> \param[out] INFO
  349. *> \verbatim
  350. *> INFO is INTEGER
  351. *> If 0, then everything ran OK.
  352. *> -1: NSIZES < 0
  353. *> -2: Some NN(j) < 0
  354. *> -3: NTYPES < 0
  355. *> -6: THRESH < 0
  356. *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
  357. *> -16: LDVL < 1 or LDVL < NMAX, where NMAX is max( NN(j) ).
  358. *> -18: LDVR < 1 or LDVR < NMAX, where NMAX is max( NN(j) ).
  359. *> -20: LDLRE < 1 or LDLRE < NMAX, where NMAX is max( NN(j) ).
  360. *> -23: NWORK too small.
  361. *> If DLATMR, SLATMS, SLATME or DGEEV returns an error code,
  362. *> the absolute value of it is returned.
  363. *>
  364. *>-----------------------------------------------------------------------
  365. *>
  366. *> Some Local Variables and Parameters:
  367. *> ---- ----- --------- --- ----------
  368. *>
  369. *> ZERO, ONE Real 0 and 1.
  370. *> MAXTYP The number of types defined.
  371. *> NMAX Largest value in NN.
  372. *> NERRS The number of tests which have exceeded THRESH
  373. *> COND, CONDS,
  374. *> IMODE Values to be passed to the matrix generators.
  375. *> ANORM Norm of A; passed to matrix generators.
  376. *>
  377. *> OVFL, UNFL Overflow and underflow thresholds.
  378. *> ULP, ULPINV Finest relative precision and its inverse.
  379. *> RTULP, RTULPI Square roots of the previous 4 values.
  380. *>
  381. *> The following four arrays decode JTYPE:
  382. *> KTYPE(j) The general type (1-10) for type "j".
  383. *> KMODE(j) The MODE value to be passed to the matrix
  384. *> generator for type "j".
  385. *> KMAGN(j) The order of magnitude ( O(1),
  386. *> O(overflow^(1/2) ), O(underflow^(1/2) )
  387. *> KCONDS(j) Selectw whether CONDS is to be 1 or
  388. *> 1/sqrt(ulp). (0 means irrelevant.)
  389. *> \endverbatim
  390. *
  391. * Authors:
  392. * ========
  393. *
  394. *> \author Univ. of Tennessee
  395. *> \author Univ. of California Berkeley
  396. *> \author Univ. of Colorado Denver
  397. *> \author NAG Ltd.
  398. *
  399. *> \date December 2016
  400. *
  401. *> \ingroup double_eig
  402. *
  403. * =====================================================================
  404. SUBROUTINE DDRVEV( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  405. $ NOUNIT, A, LDA, H, WR, WI, WR1, WI1, VL, LDVL,
  406. $ VR, LDVR, LRE, LDLRE, RESULT, WORK, NWORK,
  407. $ IWORK, INFO )
  408. *
  409. * -- LAPACK test routine (version 3.7.0) --
  410. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  411. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  412. * December 2016
  413. *
  414. * .. Scalar Arguments ..
  415. INTEGER INFO, LDA, LDLRE, LDVL, LDVR, NOUNIT, NSIZES,
  416. $ NTYPES, NWORK
  417. DOUBLE PRECISION THRESH
  418. * ..
  419. * .. Array Arguments ..
  420. LOGICAL DOTYPE( * )
  421. INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  422. DOUBLE PRECISION A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
  423. $ RESULT( 7 ), VL( LDVL, * ), VR( LDVR, * ),
  424. $ WI( * ), WI1( * ), WORK( * ), WR( * ), WR1( * )
  425. * ..
  426. *
  427. * =====================================================================
  428. *
  429. * .. Parameters ..
  430. DOUBLE PRECISION ZERO, ONE
  431. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  432. DOUBLE PRECISION TWO
  433. PARAMETER ( TWO = 2.0D0 )
  434. INTEGER MAXTYP
  435. PARAMETER ( MAXTYP = 21 )
  436. * ..
  437. * .. Local Scalars ..
  438. LOGICAL BADNN
  439. CHARACTER*3 PATH
  440. INTEGER IINFO, IMODE, ITYPE, IWK, J, JCOL, JJ, JSIZE,
  441. $ JTYPE, MTYPES, N, NERRS, NFAIL, NMAX, NNWORK,
  442. $ NTEST, NTESTF, NTESTT
  443. DOUBLE PRECISION ANORM, COND, CONDS, OVFL, RTULP, RTULPI, TNRM,
  444. $ ULP, ULPINV, UNFL, VMX, VRMX, VTST
  445. * ..
  446. * .. Local Arrays ..
  447. CHARACTER ADUMMA( 1 )
  448. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
  449. $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
  450. $ KTYPE( MAXTYP )
  451. DOUBLE PRECISION DUM( 1 ), RES( 2 )
  452. * ..
  453. * .. External Functions ..
  454. DOUBLE PRECISION DLAMCH, DLAPY2, DNRM2
  455. EXTERNAL DLAMCH, DLAPY2, DNRM2
  456. * ..
  457. * .. External Subroutines ..
  458. EXTERNAL DGEEV, DGET22, DLABAD, DLACPY, DLASET, DLASUM,
  459. $ DLATME, DLATMR, DLATMS, XERBLA
  460. * ..
  461. * .. Intrinsic Functions ..
  462. INTRINSIC ABS, MAX, MIN, SQRT
  463. * ..
  464. * .. Data statements ..
  465. DATA KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
  466. DATA KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
  467. $ 3, 1, 2, 3 /
  468. DATA KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
  469. $ 1, 5, 5, 5, 4, 3, 1 /
  470. DATA KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
  471. * ..
  472. * .. Executable Statements ..
  473. *
  474. PATH( 1: 1 ) = 'Double precision'
  475. PATH( 2: 3 ) = 'EV'
  476. *
  477. * Check for errors
  478. *
  479. NTESTT = 0
  480. NTESTF = 0
  481. INFO = 0
  482. *
  483. * Important constants
  484. *
  485. BADNN = .FALSE.
  486. NMAX = 0
  487. DO 10 J = 1, NSIZES
  488. NMAX = MAX( NMAX, NN( J ) )
  489. IF( NN( J ).LT.0 )
  490. $ BADNN = .TRUE.
  491. 10 CONTINUE
  492. *
  493. * Check for errors
  494. *
  495. IF( NSIZES.LT.0 ) THEN
  496. INFO = -1
  497. ELSE IF( BADNN ) THEN
  498. INFO = -2
  499. ELSE IF( NTYPES.LT.0 ) THEN
  500. INFO = -3
  501. ELSE IF( THRESH.LT.ZERO ) THEN
  502. INFO = -6
  503. ELSE IF( NOUNIT.LE.0 ) THEN
  504. INFO = -7
  505. ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN
  506. INFO = -9
  507. ELSE IF( LDVL.LT.1 .OR. LDVL.LT.NMAX ) THEN
  508. INFO = -16
  509. ELSE IF( LDVR.LT.1 .OR. LDVR.LT.NMAX ) THEN
  510. INFO = -18
  511. ELSE IF( LDLRE.LT.1 .OR. LDLRE.LT.NMAX ) THEN
  512. INFO = -20
  513. ELSE IF( 5*NMAX+2*NMAX**2.GT.NWORK ) THEN
  514. INFO = -23
  515. END IF
  516. *
  517. IF( INFO.NE.0 ) THEN
  518. CALL XERBLA( 'DDRVEV', -INFO )
  519. RETURN
  520. END IF
  521. *
  522. * Quick return if nothing to do
  523. *
  524. IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
  525. $ RETURN
  526. *
  527. * More Important constants
  528. *
  529. UNFL = DLAMCH( 'Safe minimum' )
  530. OVFL = ONE / UNFL
  531. CALL DLABAD( UNFL, OVFL )
  532. ULP = DLAMCH( 'Precision' )
  533. ULPINV = ONE / ULP
  534. RTULP = SQRT( ULP )
  535. RTULPI = ONE / RTULP
  536. *
  537. * Loop over sizes, types
  538. *
  539. NERRS = 0
  540. *
  541. DO 270 JSIZE = 1, NSIZES
  542. N = NN( JSIZE )
  543. IF( NSIZES.NE.1 ) THEN
  544. MTYPES = MIN( MAXTYP, NTYPES )
  545. ELSE
  546. MTYPES = MIN( MAXTYP+1, NTYPES )
  547. END IF
  548. *
  549. DO 260 JTYPE = 1, MTYPES
  550. IF( .NOT.DOTYPE( JTYPE ) )
  551. $ GO TO 260
  552. *
  553. * Save ISEED in case of an error.
  554. *
  555. DO 20 J = 1, 4
  556. IOLDSD( J ) = ISEED( J )
  557. 20 CONTINUE
  558. *
  559. * Compute "A"
  560. *
  561. * Control parameters:
  562. *
  563. * KMAGN KCONDS KMODE KTYPE
  564. * =1 O(1) 1 clustered 1 zero
  565. * =2 large large clustered 2 identity
  566. * =3 small exponential Jordan
  567. * =4 arithmetic diagonal, (w/ eigenvalues)
  568. * =5 random log symmetric, w/ eigenvalues
  569. * =6 random general, w/ eigenvalues
  570. * =7 random diagonal
  571. * =8 random symmetric
  572. * =9 random general
  573. * =10 random triangular
  574. *
  575. IF( MTYPES.GT.MAXTYP )
  576. $ GO TO 90
  577. *
  578. ITYPE = KTYPE( JTYPE )
  579. IMODE = KMODE( JTYPE )
  580. *
  581. * Compute norm
  582. *
  583. GO TO ( 30, 40, 50 )KMAGN( JTYPE )
  584. *
  585. 30 CONTINUE
  586. ANORM = ONE
  587. GO TO 60
  588. *
  589. 40 CONTINUE
  590. ANORM = OVFL*ULP
  591. GO TO 60
  592. *
  593. 50 CONTINUE
  594. ANORM = UNFL*ULPINV
  595. GO TO 60
  596. *
  597. 60 CONTINUE
  598. *
  599. CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
  600. IINFO = 0
  601. COND = ULPINV
  602. *
  603. * Special Matrices -- Identity & Jordan block
  604. *
  605. * Zero
  606. *
  607. IF( ITYPE.EQ.1 ) THEN
  608. IINFO = 0
  609. *
  610. ELSE IF( ITYPE.EQ.2 ) THEN
  611. *
  612. * Identity
  613. *
  614. DO 70 JCOL = 1, N
  615. A( JCOL, JCOL ) = ANORM
  616. 70 CONTINUE
  617. *
  618. ELSE IF( ITYPE.EQ.3 ) THEN
  619. *
  620. * Jordan Block
  621. *
  622. DO 80 JCOL = 1, N
  623. A( JCOL, JCOL ) = ANORM
  624. IF( JCOL.GT.1 )
  625. $ A( JCOL, JCOL-1 ) = ONE
  626. 80 CONTINUE
  627. *
  628. ELSE IF( ITYPE.EQ.4 ) THEN
  629. *
  630. * Diagonal Matrix, [Eigen]values Specified
  631. *
  632. CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
  633. $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
  634. $ IINFO )
  635. *
  636. ELSE IF( ITYPE.EQ.5 ) THEN
  637. *
  638. * Symmetric, eigenvalues specified
  639. *
  640. CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
  641. $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
  642. $ IINFO )
  643. *
  644. ELSE IF( ITYPE.EQ.6 ) THEN
  645. *
  646. * General, eigenvalues specified
  647. *
  648. IF( KCONDS( JTYPE ).EQ.1 ) THEN
  649. CONDS = ONE
  650. ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
  651. CONDS = RTULPI
  652. ELSE
  653. CONDS = ZERO
  654. END IF
  655. *
  656. ADUMMA( 1 ) = ' '
  657. CALL DLATME( N, 'S', ISEED, WORK, IMODE, COND, ONE,
  658. $ ADUMMA, 'T', 'T', 'T', WORK( N+1 ), 4,
  659. $ CONDS, N, N, ANORM, A, LDA, WORK( 2*N+1 ),
  660. $ IINFO )
  661. *
  662. ELSE IF( ITYPE.EQ.7 ) THEN
  663. *
  664. * Diagonal, random eigenvalues
  665. *
  666. CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
  667. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  668. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  669. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  670. *
  671. ELSE IF( ITYPE.EQ.8 ) THEN
  672. *
  673. * Symmetric, random eigenvalues
  674. *
  675. CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
  676. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  677. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  678. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  679. *
  680. ELSE IF( ITYPE.EQ.9 ) THEN
  681. *
  682. * General, random eigenvalues
  683. *
  684. CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
  685. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  686. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  687. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  688. IF( N.GE.4 ) THEN
  689. CALL DLASET( 'Full', 2, N, ZERO, ZERO, A, LDA )
  690. CALL DLASET( 'Full', N-3, 1, ZERO, ZERO, A( 3, 1 ),
  691. $ LDA )
  692. CALL DLASET( 'Full', N-3, 2, ZERO, ZERO, A( 3, N-1 ),
  693. $ LDA )
  694. CALL DLASET( 'Full', 1, N, ZERO, ZERO, A( N, 1 ),
  695. $ LDA )
  696. END IF
  697. *
  698. ELSE IF( ITYPE.EQ.10 ) THEN
  699. *
  700. * Triangular, random eigenvalues
  701. *
  702. CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
  703. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  704. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
  705. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  706. *
  707. ELSE
  708. *
  709. IINFO = 1
  710. END IF
  711. *
  712. IF( IINFO.NE.0 ) THEN
  713. WRITE( NOUNIT, FMT = 9993 )'Generator', IINFO, N, JTYPE,
  714. $ IOLDSD
  715. INFO = ABS( IINFO )
  716. RETURN
  717. END IF
  718. *
  719. 90 CONTINUE
  720. *
  721. * Test for minimal and generous workspace
  722. *
  723. DO 250 IWK = 1, 2
  724. IF( IWK.EQ.1 ) THEN
  725. NNWORK = 4*N
  726. ELSE
  727. NNWORK = 5*N + 2*N**2
  728. END IF
  729. NNWORK = MAX( NNWORK, 1 )
  730. *
  731. * Initialize RESULT
  732. *
  733. DO 100 J = 1, 7
  734. RESULT( J ) = -ONE
  735. 100 CONTINUE
  736. *
  737. * Compute eigenvalues and eigenvectors, and test them
  738. *
  739. CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
  740. CALL DGEEV( 'V', 'V', N, H, LDA, WR, WI, VL, LDVL, VR,
  741. $ LDVR, WORK, NNWORK, IINFO )
  742. IF( IINFO.NE.0 ) THEN
  743. RESULT( 1 ) = ULPINV
  744. WRITE( NOUNIT, FMT = 9993 )'DGEEV1', IINFO, N, JTYPE,
  745. $ IOLDSD
  746. INFO = ABS( IINFO )
  747. GO TO 220
  748. END IF
  749. *
  750. * Do Test (1)
  751. *
  752. CALL DGET22( 'N', 'N', 'N', N, A, LDA, VR, LDVR, WR, WI,
  753. $ WORK, RES )
  754. RESULT( 1 ) = RES( 1 )
  755. *
  756. * Do Test (2)
  757. *
  758. CALL DGET22( 'T', 'N', 'T', N, A, LDA, VL, LDVL, WR, WI,
  759. $ WORK, RES )
  760. RESULT( 2 ) = RES( 1 )
  761. *
  762. * Do Test (3)
  763. *
  764. DO 120 J = 1, N
  765. TNRM = ONE
  766. IF( WI( J ).EQ.ZERO ) THEN
  767. TNRM = DNRM2( N, VR( 1, J ), 1 )
  768. ELSE IF( WI( J ).GT.ZERO ) THEN
  769. TNRM = DLAPY2( DNRM2( N, VR( 1, J ), 1 ),
  770. $ DNRM2( N, VR( 1, J+1 ), 1 ) )
  771. END IF
  772. RESULT( 3 ) = MAX( RESULT( 3 ),
  773. $ MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) )
  774. IF( WI( J ).GT.ZERO ) THEN
  775. VMX = ZERO
  776. VRMX = ZERO
  777. DO 110 JJ = 1, N
  778. VTST = DLAPY2( VR( JJ, J ), VR( JJ, J+1 ) )
  779. IF( VTST.GT.VMX )
  780. $ VMX = VTST
  781. IF( VR( JJ, J+1 ).EQ.ZERO .AND.
  782. $ ABS( VR( JJ, J ) ).GT.VRMX )
  783. $ VRMX = ABS( VR( JJ, J ) )
  784. 110 CONTINUE
  785. IF( VRMX / VMX.LT.ONE-TWO*ULP )
  786. $ RESULT( 3 ) = ULPINV
  787. END IF
  788. 120 CONTINUE
  789. *
  790. * Do Test (4)
  791. *
  792. DO 140 J = 1, N
  793. TNRM = ONE
  794. IF( WI( J ).EQ.ZERO ) THEN
  795. TNRM = DNRM2( N, VL( 1, J ), 1 )
  796. ELSE IF( WI( J ).GT.ZERO ) THEN
  797. TNRM = DLAPY2( DNRM2( N, VL( 1, J ), 1 ),
  798. $ DNRM2( N, VL( 1, J+1 ), 1 ) )
  799. END IF
  800. RESULT( 4 ) = MAX( RESULT( 4 ),
  801. $ MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) )
  802. IF( WI( J ).GT.ZERO ) THEN
  803. VMX = ZERO
  804. VRMX = ZERO
  805. DO 130 JJ = 1, N
  806. VTST = DLAPY2( VL( JJ, J ), VL( JJ, J+1 ) )
  807. IF( VTST.GT.VMX )
  808. $ VMX = VTST
  809. IF( VL( JJ, J+1 ).EQ.ZERO .AND.
  810. $ ABS( VL( JJ, J ) ).GT.VRMX )
  811. $ VRMX = ABS( VL( JJ, J ) )
  812. 130 CONTINUE
  813. IF( VRMX / VMX.LT.ONE-TWO*ULP )
  814. $ RESULT( 4 ) = ULPINV
  815. END IF
  816. 140 CONTINUE
  817. *
  818. * Compute eigenvalues only, and test them
  819. *
  820. CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
  821. CALL DGEEV( 'N', 'N', N, H, LDA, WR1, WI1, DUM, 1, DUM,
  822. $ 1, WORK, NNWORK, IINFO )
  823. IF( IINFO.NE.0 ) THEN
  824. RESULT( 1 ) = ULPINV
  825. WRITE( NOUNIT, FMT = 9993 )'DGEEV2', IINFO, N, JTYPE,
  826. $ IOLDSD
  827. INFO = ABS( IINFO )
  828. GO TO 220
  829. END IF
  830. *
  831. * Do Test (5)
  832. *
  833. DO 150 J = 1, N
  834. IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
  835. $ RESULT( 5 ) = ULPINV
  836. 150 CONTINUE
  837. *
  838. * Compute eigenvalues and right eigenvectors, and test them
  839. *
  840. CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
  841. CALL DGEEV( 'N', 'V', N, H, LDA, WR1, WI1, DUM, 1, LRE,
  842. $ LDLRE, WORK, NNWORK, IINFO )
  843. IF( IINFO.NE.0 ) THEN
  844. RESULT( 1 ) = ULPINV
  845. WRITE( NOUNIT, FMT = 9993 )'DGEEV3', IINFO, N, JTYPE,
  846. $ IOLDSD
  847. INFO = ABS( IINFO )
  848. GO TO 220
  849. END IF
  850. *
  851. * Do Test (5) again
  852. *
  853. DO 160 J = 1, N
  854. IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
  855. $ RESULT( 5 ) = ULPINV
  856. 160 CONTINUE
  857. *
  858. * Do Test (6)
  859. *
  860. DO 180 J = 1, N
  861. DO 170 JJ = 1, N
  862. IF( VR( J, JJ ).NE.LRE( J, JJ ) )
  863. $ RESULT( 6 ) = ULPINV
  864. 170 CONTINUE
  865. 180 CONTINUE
  866. *
  867. * Compute eigenvalues and left eigenvectors, and test them
  868. *
  869. CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
  870. CALL DGEEV( 'V', 'N', N, H, LDA, WR1, WI1, LRE, LDLRE,
  871. $ DUM, 1, WORK, NNWORK, IINFO )
  872. IF( IINFO.NE.0 ) THEN
  873. RESULT( 1 ) = ULPINV
  874. WRITE( NOUNIT, FMT = 9993 )'DGEEV4', IINFO, N, JTYPE,
  875. $ IOLDSD
  876. INFO = ABS( IINFO )
  877. GO TO 220
  878. END IF
  879. *
  880. * Do Test (5) again
  881. *
  882. DO 190 J = 1, N
  883. IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
  884. $ RESULT( 5 ) = ULPINV
  885. 190 CONTINUE
  886. *
  887. * Do Test (7)
  888. *
  889. DO 210 J = 1, N
  890. DO 200 JJ = 1, N
  891. IF( VL( J, JJ ).NE.LRE( J, JJ ) )
  892. $ RESULT( 7 ) = ULPINV
  893. 200 CONTINUE
  894. 210 CONTINUE
  895. *
  896. * End of Loop -- Check for RESULT(j) > THRESH
  897. *
  898. 220 CONTINUE
  899. *
  900. NTEST = 0
  901. NFAIL = 0
  902. DO 230 J = 1, 7
  903. IF( RESULT( J ).GE.ZERO )
  904. $ NTEST = NTEST + 1
  905. IF( RESULT( J ).GE.THRESH )
  906. $ NFAIL = NFAIL + 1
  907. 230 CONTINUE
  908. *
  909. IF( NFAIL.GT.0 )
  910. $ NTESTF = NTESTF + 1
  911. IF( NTESTF.EQ.1 ) THEN
  912. WRITE( NOUNIT, FMT = 9999 )PATH
  913. WRITE( NOUNIT, FMT = 9998 )
  914. WRITE( NOUNIT, FMT = 9997 )
  915. WRITE( NOUNIT, FMT = 9996 )
  916. WRITE( NOUNIT, FMT = 9995 )THRESH
  917. NTESTF = 2
  918. END IF
  919. *
  920. DO 240 J = 1, 7
  921. IF( RESULT( J ).GE.THRESH ) THEN
  922. WRITE( NOUNIT, FMT = 9994 )N, IWK, IOLDSD, JTYPE,
  923. $ J, RESULT( J )
  924. END IF
  925. 240 CONTINUE
  926. *
  927. NERRS = NERRS + NFAIL
  928. NTESTT = NTESTT + NTEST
  929. *
  930. 250 CONTINUE
  931. 260 CONTINUE
  932. 270 CONTINUE
  933. *
  934. * Summary
  935. *
  936. CALL DLASUM( PATH, NOUNIT, NERRS, NTESTT )
  937. *
  938. 9999 FORMAT( / 1X, A3, ' -- Real Eigenvalue-Eigenvector Decomposition',
  939. $ ' Driver', / ' Matrix types (see DDRVEV for details): ' )
  940. *
  941. 9998 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ',
  942. $ ' ', ' 5=Diagonal: geometr. spaced entries.',
  943. $ / ' 2=Identity matrix. ', ' 6=Diagona',
  944. $ 'l: clustered entries.', / ' 3=Transposed Jordan block. ',
  945. $ ' ', ' 7=Diagonal: large, evenly spaced.', / ' ',
  946. $ '4=Diagonal: evenly spaced entries. ', ' 8=Diagonal: s',
  947. $ 'mall, evenly spaced.' )
  948. 9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / ' 9=Well-cond., ev',
  949. $ 'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
  950. $ 'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
  951. $ ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
  952. $ 'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
  953. $ 'lex ', / ' 12=Well-cond., random complex ', 6X, ' ',
  954. $ ' 17=Ill-cond., large rand. complx ', / ' 13=Ill-condi',
  955. $ 'tioned, evenly spaced. ', ' 18=Ill-cond., small rand.',
  956. $ ' complx ' )
  957. 9996 FORMAT( ' 19=Matrix with random O(1) entries. ', ' 21=Matrix ',
  958. $ 'with small random entries.', / ' 20=Matrix with large ran',
  959. $ 'dom entries. ', / )
  960. 9995 FORMAT( ' Tests performed with test threshold =', F8.2,
  961. $ / / ' 1 = | A VR - VR W | / ( n |A| ulp ) ',
  962. $ / ' 2 = | transpose(A) VL - VL W | / ( n |A| ulp ) ',
  963. $ / ' 3 = | |VR(i)| - 1 | / ulp ',
  964. $ / ' 4 = | |VL(i)| - 1 | / ulp ',
  965. $ / ' 5 = 0 if W same no matter if VR or VL computed,',
  966. $ ' 1/ulp otherwise', /
  967. $ ' 6 = 0 if VR same no matter if VL computed,',
  968. $ ' 1/ulp otherwise', /
  969. $ ' 7 = 0 if VL same no matter if VR computed,',
  970. $ ' 1/ulp otherwise', / )
  971. 9994 FORMAT( ' N=', I5, ', IWK=', I2, ', seed=', 4( I4, ',' ),
  972. $ ' type ', I2, ', test(', I2, ')=', G10.3 )
  973. 9993 FORMAT( ' DDRVEV: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
  974. $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  975. *
  976. RETURN
  977. *
  978. * End of DDRVEV
  979. *
  980. END