You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ddrves.f 34 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961
  1. *> \brief \b DDRVES
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DDRVES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  12. * NOUNIT, A, LDA, H, HT, WR, WI, WRT, WIT, VS,
  13. * LDVS, RESULT, WORK, NWORK, IWORK, BWORK, INFO )
  14. *
  15. * .. Scalar Arguments ..
  16. * INTEGER INFO, LDA, LDVS, NOUNIT, NSIZES, NTYPES, NWORK
  17. * DOUBLE PRECISION THRESH
  18. * ..
  19. * .. Array Arguments ..
  20. * LOGICAL BWORK( * ), DOTYPE( * )
  21. * INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  22. * DOUBLE PRECISION A( LDA, * ), H( LDA, * ), HT( LDA, * ),
  23. * $ RESULT( 13 ), VS( LDVS, * ), WI( * ), WIT( * ),
  24. * $ WORK( * ), WR( * ), WRT( * )
  25. * ..
  26. *
  27. *
  28. *> \par Purpose:
  29. * =============
  30. *>
  31. *> \verbatim
  32. *>
  33. *> DDRVES checks the nonsymmetric eigenvalue (Schur form) problem
  34. *> driver DGEES.
  35. *>
  36. *> When DDRVES is called, a number of matrix "sizes" ("n's") and a
  37. *> number of matrix "types" are specified. For each size ("n")
  38. *> and each type of matrix, one matrix will be generated and used
  39. *> to test the nonsymmetric eigenroutines. For each matrix, 13
  40. *> tests will be performed:
  41. *>
  42. *> (1) 0 if T is in Schur form, 1/ulp otherwise
  43. *> (no sorting of eigenvalues)
  44. *>
  45. *> (2) | A - VS T VS' | / ( n |A| ulp )
  46. *>
  47. *> Here VS is the matrix of Schur eigenvectors, and T is in Schur
  48. *> form (no sorting of eigenvalues).
  49. *>
  50. *> (3) | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues).
  51. *>
  52. *> (4) 0 if WR+sqrt(-1)*WI are eigenvalues of T
  53. *> 1/ulp otherwise
  54. *> (no sorting of eigenvalues)
  55. *>
  56. *> (5) 0 if T(with VS) = T(without VS),
  57. *> 1/ulp otherwise
  58. *> (no sorting of eigenvalues)
  59. *>
  60. *> (6) 0 if eigenvalues(with VS) = eigenvalues(without VS),
  61. *> 1/ulp otherwise
  62. *> (no sorting of eigenvalues)
  63. *>
  64. *> (7) 0 if T is in Schur form, 1/ulp otherwise
  65. *> (with sorting of eigenvalues)
  66. *>
  67. *> (8) | A - VS T VS' | / ( n |A| ulp )
  68. *>
  69. *> Here VS is the matrix of Schur eigenvectors, and T is in Schur
  70. *> form (with sorting of eigenvalues).
  71. *>
  72. *> (9) | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues).
  73. *>
  74. *> (10) 0 if WR+sqrt(-1)*WI are eigenvalues of T
  75. *> 1/ulp otherwise
  76. *> (with sorting of eigenvalues)
  77. *>
  78. *> (11) 0 if T(with VS) = T(without VS),
  79. *> 1/ulp otherwise
  80. *> (with sorting of eigenvalues)
  81. *>
  82. *> (12) 0 if eigenvalues(with VS) = eigenvalues(without VS),
  83. *> 1/ulp otherwise
  84. *> (with sorting of eigenvalues)
  85. *>
  86. *> (13) if sorting worked and SDIM is the number of
  87. *> eigenvalues which were SELECTed
  88. *>
  89. *> The "sizes" are specified by an array NN(1:NSIZES); the value of
  90. *> each element NN(j) specifies one size.
  91. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
  92. *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
  93. *> Currently, the list of possible types is:
  94. *>
  95. *> (1) The zero matrix.
  96. *> (2) The identity matrix.
  97. *> (3) A (transposed) Jordan block, with 1's on the diagonal.
  98. *>
  99. *> (4) A diagonal matrix with evenly spaced entries
  100. *> 1, ..., ULP and random signs.
  101. *> (ULP = (first number larger than 1) - 1 )
  102. *> (5) A diagonal matrix with geometrically spaced entries
  103. *> 1, ..., ULP and random signs.
  104. *> (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
  105. *> and random signs.
  106. *>
  107. *> (7) Same as (4), but multiplied by a constant near
  108. *> the overflow threshold
  109. *> (8) Same as (4), but multiplied by a constant near
  110. *> the underflow threshold
  111. *>
  112. *> (9) A matrix of the form U' T U, where U is orthogonal and
  113. *> T has evenly spaced entries 1, ..., ULP with random signs
  114. *> on the diagonal and random O(1) entries in the upper
  115. *> triangle.
  116. *>
  117. *> (10) A matrix of the form U' T U, where U is orthogonal and
  118. *> T has geometrically spaced entries 1, ..., ULP with random
  119. *> signs on the diagonal and random O(1) entries in the upper
  120. *> triangle.
  121. *>
  122. *> (11) A matrix of the form U' T U, where U is orthogonal and
  123. *> T has "clustered" entries 1, ULP,..., ULP with random
  124. *> signs on the diagonal and random O(1) entries in the upper
  125. *> triangle.
  126. *>
  127. *> (12) A matrix of the form U' T U, where U is orthogonal and
  128. *> T has real or complex conjugate paired eigenvalues randomly
  129. *> chosen from ( ULP, 1 ) and random O(1) entries in the upper
  130. *> triangle.
  131. *>
  132. *> (13) A matrix of the form X' T X, where X has condition
  133. *> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
  134. *> with random signs on the diagonal and random O(1) entries
  135. *> in the upper triangle.
  136. *>
  137. *> (14) A matrix of the form X' T X, where X has condition
  138. *> SQRT( ULP ) and T has geometrically spaced entries
  139. *> 1, ..., ULP with random signs on the diagonal and random
  140. *> O(1) entries in the upper triangle.
  141. *>
  142. *> (15) A matrix of the form X' T X, where X has condition
  143. *> SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
  144. *> with random signs on the diagonal and random O(1) entries
  145. *> in the upper triangle.
  146. *>
  147. *> (16) A matrix of the form X' T X, where X has condition
  148. *> SQRT( ULP ) and T has real or complex conjugate paired
  149. *> eigenvalues randomly chosen from ( ULP, 1 ) and random
  150. *> O(1) entries in the upper triangle.
  151. *>
  152. *> (17) Same as (16), but multiplied by a constant
  153. *> near the overflow threshold
  154. *> (18) Same as (16), but multiplied by a constant
  155. *> near the underflow threshold
  156. *>
  157. *> (19) Nonsymmetric matrix with random entries chosen from (-1,1).
  158. *> If N is at least 4, all entries in first two rows and last
  159. *> row, and first column and last two columns are zero.
  160. *> (20) Same as (19), but multiplied by a constant
  161. *> near the overflow threshold
  162. *> (21) Same as (19), but multiplied by a constant
  163. *> near the underflow threshold
  164. *> \endverbatim
  165. *
  166. * Arguments:
  167. * ==========
  168. *
  169. *> \param[in] NSIZES
  170. *> \verbatim
  171. *> NSIZES is INTEGER
  172. *> The number of sizes of matrices to use. If it is zero,
  173. *> DDRVES does nothing. It must be at least zero.
  174. *> \endverbatim
  175. *>
  176. *> \param[in] NN
  177. *> \verbatim
  178. *> NN is INTEGER array, dimension (NSIZES)
  179. *> An array containing the sizes to be used for the matrices.
  180. *> Zero values will be skipped. The values must be at least
  181. *> zero.
  182. *> \endverbatim
  183. *>
  184. *> \param[in] NTYPES
  185. *> \verbatim
  186. *> NTYPES is INTEGER
  187. *> The number of elements in DOTYPE. If it is zero, DDRVES
  188. *> does nothing. It must be at least zero. If it is MAXTYP+1
  189. *> and NSIZES is 1, then an additional type, MAXTYP+1 is
  190. *> defined, which is to use whatever matrix is in A. This
  191. *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
  192. *> DOTYPE(MAXTYP+1) is .TRUE. .
  193. *> \endverbatim
  194. *>
  195. *> \param[in] DOTYPE
  196. *> \verbatim
  197. *> DOTYPE is LOGICAL array, dimension (NTYPES)
  198. *> If DOTYPE(j) is .TRUE., then for each size in NN a
  199. *> matrix of that size and of type j will be generated.
  200. *> If NTYPES is smaller than the maximum number of types
  201. *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
  202. *> MAXTYP will not be generated. If NTYPES is larger
  203. *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
  204. *> will be ignored.
  205. *> \endverbatim
  206. *>
  207. *> \param[in,out] ISEED
  208. *> \verbatim
  209. *> ISEED is INTEGER array, dimension (4)
  210. *> On entry ISEED specifies the seed of the random number
  211. *> generator. The array elements should be between 0 and 4095;
  212. *> if not they will be reduced mod 4096. Also, ISEED(4) must
  213. *> be odd. The random number generator uses a linear
  214. *> congruential sequence limited to small integers, and so
  215. *> should produce machine independent random numbers. The
  216. *> values of ISEED are changed on exit, and can be used in the
  217. *> next call to DDRVES to continue the same random number
  218. *> sequence.
  219. *> \endverbatim
  220. *>
  221. *> \param[in] THRESH
  222. *> \verbatim
  223. *> THRESH is DOUBLE PRECISION
  224. *> A test will count as "failed" if the "error", computed as
  225. *> described above, exceeds THRESH. Note that the error
  226. *> is scaled to be O(1), so THRESH should be a reasonably
  227. *> small multiple of 1, e.g., 10 or 100. In particular,
  228. *> it should not depend on the precision (single vs. double)
  229. *> or the size of the matrix. It must be at least zero.
  230. *> \endverbatim
  231. *>
  232. *> \param[in] NOUNIT
  233. *> \verbatim
  234. *> NOUNIT is INTEGER
  235. *> The FORTRAN unit number for printing out error messages
  236. *> (e.g., if a routine returns INFO not equal to 0.)
  237. *> \endverbatim
  238. *>
  239. *> \param[out] A
  240. *> \verbatim
  241. *> A is DOUBLE PRECISION array, dimension (LDA, max(NN))
  242. *> Used to hold the matrix whose eigenvalues are to be
  243. *> computed. On exit, A contains the last matrix actually used.
  244. *> \endverbatim
  245. *>
  246. *> \param[in] LDA
  247. *> \verbatim
  248. *> LDA is INTEGER
  249. *> The leading dimension of A, and H. LDA must be at
  250. *> least 1 and at least max(NN).
  251. *> \endverbatim
  252. *>
  253. *> \param[out] H
  254. *> \verbatim
  255. *> H is DOUBLE PRECISION array, dimension (LDA, max(NN))
  256. *> Another copy of the test matrix A, modified by DGEES.
  257. *> \endverbatim
  258. *>
  259. *> \param[out] HT
  260. *> \verbatim
  261. *> HT is DOUBLE PRECISION array, dimension (LDA, max(NN))
  262. *> Yet another copy of the test matrix A, modified by DGEES.
  263. *> \endverbatim
  264. *>
  265. *> \param[out] WR
  266. *> \verbatim
  267. *> WR is DOUBLE PRECISION array, dimension (max(NN))
  268. *> \endverbatim
  269. *>
  270. *> \param[out] WI
  271. *> \verbatim
  272. *> WI is DOUBLE PRECISION array, dimension (max(NN))
  273. *>
  274. *> The real and imaginary parts of the eigenvalues of A.
  275. *> On exit, WR + WI*i are the eigenvalues of the matrix in A.
  276. *> \endverbatim
  277. *>
  278. *> \param[out] WRT
  279. *> \verbatim
  280. *> WRT is DOUBLE PRECISION array, dimension (max(NN))
  281. *> \endverbatim
  282. *>
  283. *> \param[out] WIT
  284. *> \verbatim
  285. *> WIT is DOUBLE PRECISION array, dimension (max(NN))
  286. *>
  287. *> Like WR, WI, these arrays contain the eigenvalues of A,
  288. *> but those computed when DGEES only computes a partial
  289. *> eigendecomposition, i.e. not Schur vectors
  290. *> \endverbatim
  291. *>
  292. *> \param[out] VS
  293. *> \verbatim
  294. *> VS is DOUBLE PRECISION array, dimension (LDVS, max(NN))
  295. *> VS holds the computed Schur vectors.
  296. *> \endverbatim
  297. *>
  298. *> \param[in] LDVS
  299. *> \verbatim
  300. *> LDVS is INTEGER
  301. *> Leading dimension of VS. Must be at least max(1,max(NN)).
  302. *> \endverbatim
  303. *>
  304. *> \param[out] RESULT
  305. *> \verbatim
  306. *> RESULT is DOUBLE PRECISION array, dimension (13)
  307. *> The values computed by the 13 tests described above.
  308. *> The values are currently limited to 1/ulp, to avoid overflow.
  309. *> \endverbatim
  310. *>
  311. *> \param[out] WORK
  312. *> \verbatim
  313. *> WORK is DOUBLE PRECISION array, dimension (NWORK)
  314. *> \endverbatim
  315. *>
  316. *> \param[in] NWORK
  317. *> \verbatim
  318. *> NWORK is INTEGER
  319. *> The number of entries in WORK. This must be at least
  320. *> 5*NN(j)+2*NN(j)**2 for all j.
  321. *> \endverbatim
  322. *>
  323. *> \param[out] IWORK
  324. *> \verbatim
  325. *> IWORK is INTEGER array, dimension (max(NN))
  326. *> \endverbatim
  327. *>
  328. *> \param[out] BWORK
  329. *> \verbatim
  330. *> BWORK is LOGICAL array, dimension (max(NN))
  331. *> \endverbatim
  332. *>
  333. *> \param[out] INFO
  334. *> \verbatim
  335. *> INFO is INTEGER
  336. *> If 0, then everything ran OK.
  337. *> -1: NSIZES < 0
  338. *> -2: Some NN(j) < 0
  339. *> -3: NTYPES < 0
  340. *> -6: THRESH < 0
  341. *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
  342. *> -17: LDVS < 1 or LDVS < NMAX, where NMAX is max( NN(j) ).
  343. *> -20: NWORK too small.
  344. *> If DLATMR, SLATMS, SLATME or DGEES returns an error code,
  345. *> the absolute value of it is returned.
  346. *>
  347. *>-----------------------------------------------------------------------
  348. *>
  349. *> Some Local Variables and Parameters:
  350. *> ---- ----- --------- --- ----------
  351. *>
  352. *> ZERO, ONE Real 0 and 1.
  353. *> MAXTYP The number of types defined.
  354. *> NMAX Largest value in NN.
  355. *> NERRS The number of tests which have exceeded THRESH
  356. *> COND, CONDS,
  357. *> IMODE Values to be passed to the matrix generators.
  358. *> ANORM Norm of A; passed to matrix generators.
  359. *>
  360. *> OVFL, UNFL Overflow and underflow thresholds.
  361. *> ULP, ULPINV Finest relative precision and its inverse.
  362. *> RTULP, RTULPI Square roots of the previous 4 values.
  363. *>
  364. *> The following four arrays decode JTYPE:
  365. *> KTYPE(j) The general type (1-10) for type "j".
  366. *> KMODE(j) The MODE value to be passed to the matrix
  367. *> generator for type "j".
  368. *> KMAGN(j) The order of magnitude ( O(1),
  369. *> O(overflow^(1/2) ), O(underflow^(1/2) )
  370. *> KCONDS(j) Selectw whether CONDS is to be 1 or
  371. *> 1/sqrt(ulp). (0 means irrelevant.)
  372. *> \endverbatim
  373. *
  374. * Authors:
  375. * ========
  376. *
  377. *> \author Univ. of Tennessee
  378. *> \author Univ. of California Berkeley
  379. *> \author Univ. of Colorado Denver
  380. *> \author NAG Ltd.
  381. *
  382. *> \date June 2016
  383. *
  384. *> \ingroup double_eig
  385. *
  386. * =====================================================================
  387. SUBROUTINE DDRVES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  388. $ NOUNIT, A, LDA, H, HT, WR, WI, WRT, WIT, VS,
  389. $ LDVS, RESULT, WORK, NWORK, IWORK, BWORK, INFO )
  390. *
  391. * -- LAPACK test routine (version 3.7.0) --
  392. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  393. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  394. * June 2016
  395. *
  396. * .. Scalar Arguments ..
  397. INTEGER INFO, LDA, LDVS, NOUNIT, NSIZES, NTYPES, NWORK
  398. DOUBLE PRECISION THRESH
  399. * ..
  400. * .. Array Arguments ..
  401. LOGICAL BWORK( * ), DOTYPE( * )
  402. INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  403. DOUBLE PRECISION A( LDA, * ), H( LDA, * ), HT( LDA, * ),
  404. $ RESULT( 13 ), VS( LDVS, * ), WI( * ), WIT( * ),
  405. $ WORK( * ), WR( * ), WRT( * )
  406. * ..
  407. *
  408. * =====================================================================
  409. *
  410. * .. Parameters ..
  411. DOUBLE PRECISION ZERO, ONE
  412. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  413. INTEGER MAXTYP
  414. PARAMETER ( MAXTYP = 21 )
  415. * ..
  416. * .. Local Scalars ..
  417. LOGICAL BADNN
  418. CHARACTER SORT
  419. CHARACTER*3 PATH
  420. INTEGER I, IINFO, IMODE, ISORT, ITYPE, IWK, J, JCOL,
  421. $ JSIZE, JTYPE, KNTEIG, LWORK, MTYPES, N, NERRS,
  422. $ NFAIL, NMAX, NNWORK, NTEST, NTESTF, NTESTT,
  423. $ RSUB, SDIM
  424. DOUBLE PRECISION ANORM, COND, CONDS, OVFL, RTULP, RTULPI, TMP,
  425. $ ULP, ULPINV, UNFL
  426. * ..
  427. * .. Local Arrays ..
  428. CHARACTER ADUMMA( 1 )
  429. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
  430. $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
  431. $ KTYPE( MAXTYP )
  432. DOUBLE PRECISION RES( 2 )
  433. * ..
  434. * .. Arrays in Common ..
  435. LOGICAL SELVAL( 20 )
  436. DOUBLE PRECISION SELWI( 20 ), SELWR( 20 )
  437. * ..
  438. * .. Scalars in Common ..
  439. INTEGER SELDIM, SELOPT
  440. * ..
  441. * .. Common blocks ..
  442. COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI
  443. * ..
  444. * .. External Functions ..
  445. LOGICAL DSLECT
  446. DOUBLE PRECISION DLAMCH
  447. EXTERNAL DSLECT, DLAMCH
  448. * ..
  449. * .. External Subroutines ..
  450. EXTERNAL DGEES, DHST01, DLABAD, DLACPY, DLASET, DLASUM,
  451. $ DLATME, DLATMR, DLATMS, XERBLA
  452. * ..
  453. * .. Intrinsic Functions ..
  454. INTRINSIC ABS, MAX, SIGN, SQRT
  455. * ..
  456. * .. Data statements ..
  457. DATA KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
  458. DATA KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
  459. $ 3, 1, 2, 3 /
  460. DATA KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
  461. $ 1, 5, 5, 5, 4, 3, 1 /
  462. DATA KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
  463. * ..
  464. * .. Executable Statements ..
  465. *
  466. PATH( 1: 1 ) = 'Double precision'
  467. PATH( 2: 3 ) = 'ES'
  468. *
  469. * Check for errors
  470. *
  471. NTESTT = 0
  472. NTESTF = 0
  473. INFO = 0
  474. SELOPT = 0
  475. *
  476. * Important constants
  477. *
  478. BADNN = .FALSE.
  479. NMAX = 0
  480. DO 10 J = 1, NSIZES
  481. NMAX = MAX( NMAX, NN( J ) )
  482. IF( NN( J ).LT.0 )
  483. $ BADNN = .TRUE.
  484. 10 CONTINUE
  485. *
  486. * Check for errors
  487. *
  488. IF( NSIZES.LT.0 ) THEN
  489. INFO = -1
  490. ELSE IF( BADNN ) THEN
  491. INFO = -2
  492. ELSE IF( NTYPES.LT.0 ) THEN
  493. INFO = -3
  494. ELSE IF( THRESH.LT.ZERO ) THEN
  495. INFO = -6
  496. ELSE IF( NOUNIT.LE.0 ) THEN
  497. INFO = -7
  498. ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN
  499. INFO = -9
  500. ELSE IF( LDVS.LT.1 .OR. LDVS.LT.NMAX ) THEN
  501. INFO = -17
  502. ELSE IF( 5*NMAX+2*NMAX**2.GT.NWORK ) THEN
  503. INFO = -20
  504. END IF
  505. *
  506. IF( INFO.NE.0 ) THEN
  507. CALL XERBLA( 'DDRVES', -INFO )
  508. RETURN
  509. END IF
  510. *
  511. * Quick return if nothing to do
  512. *
  513. IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
  514. $ RETURN
  515. *
  516. * More Important constants
  517. *
  518. UNFL = DLAMCH( 'Safe minimum' )
  519. OVFL = ONE / UNFL
  520. CALL DLABAD( UNFL, OVFL )
  521. ULP = DLAMCH( 'Precision' )
  522. ULPINV = ONE / ULP
  523. RTULP = SQRT( ULP )
  524. RTULPI = ONE / RTULP
  525. *
  526. * Loop over sizes, types
  527. *
  528. NERRS = 0
  529. *
  530. DO 270 JSIZE = 1, NSIZES
  531. N = NN( JSIZE )
  532. MTYPES = MAXTYP
  533. IF( NSIZES.EQ.1 .AND. NTYPES.EQ.MAXTYP+1 )
  534. $ MTYPES = MTYPES + 1
  535. *
  536. DO 260 JTYPE = 1, MTYPES
  537. IF( .NOT.DOTYPE( JTYPE ) )
  538. $ GO TO 260
  539. *
  540. * Save ISEED in case of an error.
  541. *
  542. DO 20 J = 1, 4
  543. IOLDSD( J ) = ISEED( J )
  544. 20 CONTINUE
  545. *
  546. * Compute "A"
  547. *
  548. * Control parameters:
  549. *
  550. * KMAGN KCONDS KMODE KTYPE
  551. * =1 O(1) 1 clustered 1 zero
  552. * =2 large large clustered 2 identity
  553. * =3 small exponential Jordan
  554. * =4 arithmetic diagonal, (w/ eigenvalues)
  555. * =5 random log symmetric, w/ eigenvalues
  556. * =6 random general, w/ eigenvalues
  557. * =7 random diagonal
  558. * =8 random symmetric
  559. * =9 random general
  560. * =10 random triangular
  561. *
  562. IF( MTYPES.GT.MAXTYP )
  563. $ GO TO 90
  564. *
  565. ITYPE = KTYPE( JTYPE )
  566. IMODE = KMODE( JTYPE )
  567. *
  568. * Compute norm
  569. *
  570. GO TO ( 30, 40, 50 )KMAGN( JTYPE )
  571. *
  572. 30 CONTINUE
  573. ANORM = ONE
  574. GO TO 60
  575. *
  576. 40 CONTINUE
  577. ANORM = OVFL*ULP
  578. GO TO 60
  579. *
  580. 50 CONTINUE
  581. ANORM = UNFL*ULPINV
  582. GO TO 60
  583. *
  584. 60 CONTINUE
  585. *
  586. CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
  587. IINFO = 0
  588. COND = ULPINV
  589. *
  590. * Special Matrices -- Identity & Jordan block
  591. *
  592. * Zero
  593. *
  594. IF( ITYPE.EQ.1 ) THEN
  595. IINFO = 0
  596. *
  597. ELSE IF( ITYPE.EQ.2 ) THEN
  598. *
  599. * Identity
  600. *
  601. DO 70 JCOL = 1, N
  602. A( JCOL, JCOL ) = ANORM
  603. 70 CONTINUE
  604. *
  605. ELSE IF( ITYPE.EQ.3 ) THEN
  606. *
  607. * Jordan Block
  608. *
  609. DO 80 JCOL = 1, N
  610. A( JCOL, JCOL ) = ANORM
  611. IF( JCOL.GT.1 )
  612. $ A( JCOL, JCOL-1 ) = ONE
  613. 80 CONTINUE
  614. *
  615. ELSE IF( ITYPE.EQ.4 ) THEN
  616. *
  617. * Diagonal Matrix, [Eigen]values Specified
  618. *
  619. CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
  620. $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
  621. $ IINFO )
  622. *
  623. ELSE IF( ITYPE.EQ.5 ) THEN
  624. *
  625. * Symmetric, eigenvalues specified
  626. *
  627. CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
  628. $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
  629. $ IINFO )
  630. *
  631. ELSE IF( ITYPE.EQ.6 ) THEN
  632. *
  633. * General, eigenvalues specified
  634. *
  635. IF( KCONDS( JTYPE ).EQ.1 ) THEN
  636. CONDS = ONE
  637. ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
  638. CONDS = RTULPI
  639. ELSE
  640. CONDS = ZERO
  641. END IF
  642. *
  643. ADUMMA( 1 ) = ' '
  644. CALL DLATME( N, 'S', ISEED, WORK, IMODE, COND, ONE,
  645. $ ADUMMA, 'T', 'T', 'T', WORK( N+1 ), 4,
  646. $ CONDS, N, N, ANORM, A, LDA, WORK( 2*N+1 ),
  647. $ IINFO )
  648. *
  649. ELSE IF( ITYPE.EQ.7 ) THEN
  650. *
  651. * Diagonal, random eigenvalues
  652. *
  653. CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
  654. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  655. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  656. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  657. *
  658. ELSE IF( ITYPE.EQ.8 ) THEN
  659. *
  660. * Symmetric, random eigenvalues
  661. *
  662. CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
  663. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  664. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  665. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  666. *
  667. ELSE IF( ITYPE.EQ.9 ) THEN
  668. *
  669. * General, random eigenvalues
  670. *
  671. CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
  672. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  673. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  674. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  675. IF( N.GE.4 ) THEN
  676. CALL DLASET( 'Full', 2, N, ZERO, ZERO, A, LDA )
  677. CALL DLASET( 'Full', N-3, 1, ZERO, ZERO, A( 3, 1 ),
  678. $ LDA )
  679. CALL DLASET( 'Full', N-3, 2, ZERO, ZERO, A( 3, N-1 ),
  680. $ LDA )
  681. CALL DLASET( 'Full', 1, N, ZERO, ZERO, A( N, 1 ),
  682. $ LDA )
  683. END IF
  684. *
  685. ELSE IF( ITYPE.EQ.10 ) THEN
  686. *
  687. * Triangular, random eigenvalues
  688. *
  689. CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
  690. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  691. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
  692. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  693. *
  694. ELSE
  695. *
  696. IINFO = 1
  697. END IF
  698. *
  699. IF( IINFO.NE.0 ) THEN
  700. WRITE( NOUNIT, FMT = 9992 )'Generator', IINFO, N, JTYPE,
  701. $ IOLDSD
  702. INFO = ABS( IINFO )
  703. RETURN
  704. END IF
  705. *
  706. 90 CONTINUE
  707. *
  708. * Test for minimal and generous workspace
  709. *
  710. DO 250 IWK = 1, 2
  711. IF( IWK.EQ.1 ) THEN
  712. NNWORK = 3*N
  713. ELSE
  714. NNWORK = 5*N + 2*N**2
  715. END IF
  716. NNWORK = MAX( NNWORK, 1 )
  717. *
  718. * Initialize RESULT
  719. *
  720. DO 100 J = 1, 13
  721. RESULT( J ) = -ONE
  722. 100 CONTINUE
  723. *
  724. * Test with and without sorting of eigenvalues
  725. *
  726. DO 210 ISORT = 0, 1
  727. IF( ISORT.EQ.0 ) THEN
  728. SORT = 'N'
  729. RSUB = 0
  730. ELSE
  731. SORT = 'S'
  732. RSUB = 6
  733. END IF
  734. *
  735. * Compute Schur form and Schur vectors, and test them
  736. *
  737. CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
  738. CALL DGEES( 'V', SORT, DSLECT, N, H, LDA, SDIM, WR,
  739. $ WI, VS, LDVS, WORK, NNWORK, BWORK, IINFO )
  740. IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
  741. RESULT( 1+RSUB ) = ULPINV
  742. WRITE( NOUNIT, FMT = 9992 )'DGEES1', IINFO, N,
  743. $ JTYPE, IOLDSD
  744. INFO = ABS( IINFO )
  745. GO TO 220
  746. END IF
  747. *
  748. * Do Test (1) or Test (7)
  749. *
  750. RESULT( 1+RSUB ) = ZERO
  751. DO 120 J = 1, N - 2
  752. DO 110 I = J + 2, N
  753. IF( H( I, J ).NE.ZERO )
  754. $ RESULT( 1+RSUB ) = ULPINV
  755. 110 CONTINUE
  756. 120 CONTINUE
  757. DO 130 I = 1, N - 2
  758. IF( H( I+1, I ).NE.ZERO .AND. H( I+2, I+1 ).NE.
  759. $ ZERO )RESULT( 1+RSUB ) = ULPINV
  760. 130 CONTINUE
  761. DO 140 I = 1, N - 1
  762. IF( H( I+1, I ).NE.ZERO ) THEN
  763. IF( H( I, I ).NE.H( I+1, I+1 ) .OR.
  764. $ H( I, I+1 ).EQ.ZERO .OR.
  765. $ SIGN( ONE, H( I+1, I ) ).EQ.
  766. $ SIGN( ONE, H( I, I+1 ) ) )RESULT( 1+RSUB )
  767. $ = ULPINV
  768. END IF
  769. 140 CONTINUE
  770. *
  771. * Do Tests (2) and (3) or Tests (8) and (9)
  772. *
  773. LWORK = MAX( 1, 2*N*N )
  774. CALL DHST01( N, 1, N, A, LDA, H, LDA, VS, LDVS, WORK,
  775. $ LWORK, RES )
  776. RESULT( 2+RSUB ) = RES( 1 )
  777. RESULT( 3+RSUB ) = RES( 2 )
  778. *
  779. * Do Test (4) or Test (10)
  780. *
  781. RESULT( 4+RSUB ) = ZERO
  782. DO 150 I = 1, N
  783. IF( H( I, I ).NE.WR( I ) )
  784. $ RESULT( 4+RSUB ) = ULPINV
  785. 150 CONTINUE
  786. IF( N.GT.1 ) THEN
  787. IF( H( 2, 1 ).EQ.ZERO .AND. WI( 1 ).NE.ZERO )
  788. $ RESULT( 4+RSUB ) = ULPINV
  789. IF( H( N, N-1 ).EQ.ZERO .AND. WI( N ).NE.ZERO )
  790. $ RESULT( 4+RSUB ) = ULPINV
  791. END IF
  792. DO 160 I = 1, N - 1
  793. IF( H( I+1, I ).NE.ZERO ) THEN
  794. TMP = SQRT( ABS( H( I+1, I ) ) )*
  795. $ SQRT( ABS( H( I, I+1 ) ) )
  796. RESULT( 4+RSUB ) = MAX( RESULT( 4+RSUB ),
  797. $ ABS( WI( I )-TMP ) /
  798. $ MAX( ULP*TMP, UNFL ) )
  799. RESULT( 4+RSUB ) = MAX( RESULT( 4+RSUB ),
  800. $ ABS( WI( I+1 )+TMP ) /
  801. $ MAX( ULP*TMP, UNFL ) )
  802. ELSE IF( I.GT.1 ) THEN
  803. IF( H( I+1, I ).EQ.ZERO .AND. H( I, I-1 ).EQ.
  804. $ ZERO .AND. WI( I ).NE.ZERO )RESULT( 4+RSUB )
  805. $ = ULPINV
  806. END IF
  807. 160 CONTINUE
  808. *
  809. * Do Test (5) or Test (11)
  810. *
  811. CALL DLACPY( 'F', N, N, A, LDA, HT, LDA )
  812. CALL DGEES( 'N', SORT, DSLECT, N, HT, LDA, SDIM, WRT,
  813. $ WIT, VS, LDVS, WORK, NNWORK, BWORK,
  814. $ IINFO )
  815. IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
  816. RESULT( 5+RSUB ) = ULPINV
  817. WRITE( NOUNIT, FMT = 9992 )'DGEES2', IINFO, N,
  818. $ JTYPE, IOLDSD
  819. INFO = ABS( IINFO )
  820. GO TO 220
  821. END IF
  822. *
  823. RESULT( 5+RSUB ) = ZERO
  824. DO 180 J = 1, N
  825. DO 170 I = 1, N
  826. IF( H( I, J ).NE.HT( I, J ) )
  827. $ RESULT( 5+RSUB ) = ULPINV
  828. 170 CONTINUE
  829. 180 CONTINUE
  830. *
  831. * Do Test (6) or Test (12)
  832. *
  833. RESULT( 6+RSUB ) = ZERO
  834. DO 190 I = 1, N
  835. IF( WR( I ).NE.WRT( I ) .OR. WI( I ).NE.WIT( I ) )
  836. $ RESULT( 6+RSUB ) = ULPINV
  837. 190 CONTINUE
  838. *
  839. * Do Test (13)
  840. *
  841. IF( ISORT.EQ.1 ) THEN
  842. RESULT( 13 ) = ZERO
  843. KNTEIG = 0
  844. DO 200 I = 1, N
  845. IF( DSLECT( WR( I ), WI( I ) ) .OR.
  846. $ DSLECT( WR( I ), -WI( I ) ) )
  847. $ KNTEIG = KNTEIG + 1
  848. IF( I.LT.N ) THEN
  849. IF( ( DSLECT( WR( I+1 ),
  850. $ WI( I+1 ) ) .OR. DSLECT( WR( I+1 ),
  851. $ -WI( I+1 ) ) ) .AND.
  852. $ ( .NOT.( DSLECT( WR( I ),
  853. $ WI( I ) ) .OR. DSLECT( WR( I ),
  854. $ -WI( I ) ) ) ) .AND. IINFO.NE.N+2 )
  855. $ RESULT( 13 ) = ULPINV
  856. END IF
  857. 200 CONTINUE
  858. IF( SDIM.NE.KNTEIG ) THEN
  859. RESULT( 13 ) = ULPINV
  860. END IF
  861. END IF
  862. *
  863. 210 CONTINUE
  864. *
  865. * End of Loop -- Check for RESULT(j) > THRESH
  866. *
  867. 220 CONTINUE
  868. *
  869. NTEST = 0
  870. NFAIL = 0
  871. DO 230 J = 1, 13
  872. IF( RESULT( J ).GE.ZERO )
  873. $ NTEST = NTEST + 1
  874. IF( RESULT( J ).GE.THRESH )
  875. $ NFAIL = NFAIL + 1
  876. 230 CONTINUE
  877. *
  878. IF( NFAIL.GT.0 )
  879. $ NTESTF = NTESTF + 1
  880. IF( NTESTF.EQ.1 ) THEN
  881. WRITE( NOUNIT, FMT = 9999 )PATH
  882. WRITE( NOUNIT, FMT = 9998 )
  883. WRITE( NOUNIT, FMT = 9997 )
  884. WRITE( NOUNIT, FMT = 9996 )
  885. WRITE( NOUNIT, FMT = 9995 )THRESH
  886. WRITE( NOUNIT, FMT = 9994 )
  887. NTESTF = 2
  888. END IF
  889. *
  890. DO 240 J = 1, 13
  891. IF( RESULT( J ).GE.THRESH ) THEN
  892. WRITE( NOUNIT, FMT = 9993 )N, IWK, IOLDSD, JTYPE,
  893. $ J, RESULT( J )
  894. END IF
  895. 240 CONTINUE
  896. *
  897. NERRS = NERRS + NFAIL
  898. NTESTT = NTESTT + NTEST
  899. *
  900. 250 CONTINUE
  901. 260 CONTINUE
  902. 270 CONTINUE
  903. *
  904. * Summary
  905. *
  906. CALL DLASUM( PATH, NOUNIT, NERRS, NTESTT )
  907. *
  908. 9999 FORMAT( / 1X, A3, ' -- Real Schur Form Decomposition Driver',
  909. $ / ' Matrix types (see DDRVES for details): ' )
  910. *
  911. 9998 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ',
  912. $ ' ', ' 5=Diagonal: geometr. spaced entries.',
  913. $ / ' 2=Identity matrix. ', ' 6=Diagona',
  914. $ 'l: clustered entries.', / ' 3=Transposed Jordan block. ',
  915. $ ' ', ' 7=Diagonal: large, evenly spaced.', / ' ',
  916. $ '4=Diagonal: evenly spaced entries. ', ' 8=Diagonal: s',
  917. $ 'mall, evenly spaced.' )
  918. 9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / ' 9=Well-cond., ev',
  919. $ 'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
  920. $ 'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
  921. $ ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
  922. $ 'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
  923. $ 'lex ', / ' 12=Well-cond., random complex ', 6X, ' ',
  924. $ ' 17=Ill-cond., large rand. complx ', / ' 13=Ill-condi',
  925. $ 'tioned, evenly spaced. ', ' 18=Ill-cond., small rand.',
  926. $ ' complx ' )
  927. 9996 FORMAT( ' 19=Matrix with random O(1) entries. ', ' 21=Matrix ',
  928. $ 'with small random entries.', / ' 20=Matrix with large ran',
  929. $ 'dom entries. ', / )
  930. 9995 FORMAT( ' Tests performed with test threshold =', F8.2,
  931. $ / ' ( A denotes A on input and T denotes A on output)',
  932. $ / / ' 1 = 0 if T in Schur form (no sort), ',
  933. $ ' 1/ulp otherwise', /
  934. $ ' 2 = | A - VS T transpose(VS) | / ( n |A| ulp ) (no sort)',
  935. $ / ' 3 = | I - VS transpose(VS) | / ( n ulp ) (no sort) ', /
  936. $ ' 4 = 0 if WR+sqrt(-1)*WI are eigenvalues of T (no sort),',
  937. $ ' 1/ulp otherwise', /
  938. $ ' 5 = 0 if T same no matter if VS computed (no sort),',
  939. $ ' 1/ulp otherwise', /
  940. $ ' 6 = 0 if WR, WI same no matter if VS computed (no sort)',
  941. $ ', 1/ulp otherwise' )
  942. 9994 FORMAT( ' 7 = 0 if T in Schur form (sort), ', ' 1/ulp otherwise',
  943. $ / ' 8 = | A - VS T transpose(VS) | / ( n |A| ulp ) (sort)',
  944. $ / ' 9 = | I - VS transpose(VS) | / ( n ulp ) (sort) ',
  945. $ / ' 10 = 0 if WR+sqrt(-1)*WI are eigenvalues of T (sort),',
  946. $ ' 1/ulp otherwise', /
  947. $ ' 11 = 0 if T same no matter if VS computed (sort),',
  948. $ ' 1/ulp otherwise', /
  949. $ ' 12 = 0 if WR, WI same no matter if VS computed (sort),',
  950. $ ' 1/ulp otherwise', /
  951. $ ' 13 = 0 if sorting successful, 1/ulp otherwise', / )
  952. 9993 FORMAT( ' N=', I5, ', IWK=', I2, ', seed=', 4( I4, ',' ),
  953. $ ' type ', I2, ', test(', I2, ')=', G10.3 )
  954. 9992 FORMAT( ' DDRVES: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
  955. $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  956. *
  957. RETURN
  958. *
  959. * End of DDRVES
  960. *
  961. END