You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cbdt02.f 5.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199
  1. *> \brief \b CBDT02
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CBDT02( M, N, B, LDB, C, LDC, U, LDU, WORK, RWORK,
  12. * RESID )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER LDB, LDC, LDU, M, N
  16. * REAL RESID
  17. * ..
  18. * .. Array Arguments ..
  19. * REAL RWORK( * )
  20. * COMPLEX B( LDB, * ), C( LDC, * ), U( LDU, * ),
  21. * $ WORK( * )
  22. * ..
  23. *
  24. *
  25. *> \par Purpose:
  26. * =============
  27. *>
  28. *> \verbatim
  29. *>
  30. *> CBDT02 tests the change of basis C = U' * B by computing the residual
  31. *>
  32. *> RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
  33. *>
  34. *> where B and C are M by N matrices, U is an M by M orthogonal matrix,
  35. *> and EPS is the machine precision.
  36. *> \endverbatim
  37. *
  38. * Arguments:
  39. * ==========
  40. *
  41. *> \param[in] M
  42. *> \verbatim
  43. *> M is INTEGER
  44. *> The number of rows of the matrices B and C and the order of
  45. *> the matrix Q.
  46. *> \endverbatim
  47. *>
  48. *> \param[in] N
  49. *> \verbatim
  50. *> N is INTEGER
  51. *> The number of columns of the matrices B and C.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] B
  55. *> \verbatim
  56. *> B is COMPLEX array, dimension (LDB,N)
  57. *> The m by n matrix B.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] LDB
  61. *> \verbatim
  62. *> LDB is INTEGER
  63. *> The leading dimension of the array B. LDB >= max(1,M).
  64. *> \endverbatim
  65. *>
  66. *> \param[in] C
  67. *> \verbatim
  68. *> C is COMPLEX array, dimension (LDC,N)
  69. *> The m by n matrix C, assumed to contain U' * B.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] LDC
  73. *> \verbatim
  74. *> LDC is INTEGER
  75. *> The leading dimension of the array C. LDC >= max(1,M).
  76. *> \endverbatim
  77. *>
  78. *> \param[in] U
  79. *> \verbatim
  80. *> U is COMPLEX array, dimension (LDU,M)
  81. *> The m by m orthogonal matrix U.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] LDU
  85. *> \verbatim
  86. *> LDU is INTEGER
  87. *> The leading dimension of the array U. LDU >= max(1,M).
  88. *> \endverbatim
  89. *>
  90. *> \param[out] WORK
  91. *> \verbatim
  92. *> WORK is COMPLEX array, dimension (M)
  93. *> \endverbatim
  94. *>
  95. *> \param[out] RWORK
  96. *> \verbatim
  97. *> RWORK is REAL array, dimension (M)
  98. *> \endverbatim
  99. *>
  100. *> \param[out] RESID
  101. *> \verbatim
  102. *> RESID is REAL
  103. *> RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
  104. *> \endverbatim
  105. *
  106. * Authors:
  107. * ========
  108. *
  109. *> \author Univ. of Tennessee
  110. *> \author Univ. of California Berkeley
  111. *> \author Univ. of Colorado Denver
  112. *> \author NAG Ltd.
  113. *
  114. *> \date December 2016
  115. *
  116. *> \ingroup complex_eig
  117. *
  118. * =====================================================================
  119. SUBROUTINE CBDT02( M, N, B, LDB, C, LDC, U, LDU, WORK, RWORK,
  120. $ RESID )
  121. *
  122. * -- LAPACK test routine (version 3.7.0) --
  123. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  124. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  125. * December 2016
  126. *
  127. * .. Scalar Arguments ..
  128. INTEGER LDB, LDC, LDU, M, N
  129. REAL RESID
  130. * ..
  131. * .. Array Arguments ..
  132. REAL RWORK( * )
  133. COMPLEX B( LDB, * ), C( LDC, * ), U( LDU, * ),
  134. $ WORK( * )
  135. * ..
  136. *
  137. * ======================================================================
  138. *
  139. * .. Parameters ..
  140. REAL ZERO, ONE
  141. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  142. * ..
  143. * .. Local Scalars ..
  144. INTEGER J
  145. REAL BNORM, EPS, REALMN
  146. * ..
  147. * .. External Functions ..
  148. REAL CLANGE, SCASUM, SLAMCH
  149. EXTERNAL CLANGE, SCASUM, SLAMCH
  150. * ..
  151. * .. External Subroutines ..
  152. EXTERNAL CCOPY, CGEMV
  153. * ..
  154. * .. Intrinsic Functions ..
  155. INTRINSIC CMPLX, MAX, MIN, REAL
  156. * ..
  157. * .. Executable Statements ..
  158. *
  159. * Quick return if possible
  160. *
  161. RESID = ZERO
  162. IF( M.LE.0 .OR. N.LE.0 )
  163. $ RETURN
  164. REALMN = REAL( MAX( M, N ) )
  165. EPS = SLAMCH( 'Precision' )
  166. *
  167. * Compute norm( B - U * C )
  168. *
  169. DO 10 J = 1, N
  170. CALL CCOPY( M, B( 1, J ), 1, WORK, 1 )
  171. CALL CGEMV( 'No transpose', M, M, -CMPLX( ONE ), U, LDU,
  172. $ C( 1, J ), 1, CMPLX( ONE ), WORK, 1 )
  173. RESID = MAX( RESID, SCASUM( M, WORK, 1 ) )
  174. 10 CONTINUE
  175. *
  176. * Compute norm of B.
  177. *
  178. BNORM = CLANGE( '1', M, N, B, LDB, RWORK )
  179. *
  180. IF( BNORM.LE.ZERO ) THEN
  181. IF( RESID.NE.ZERO )
  182. $ RESID = ONE / EPS
  183. ELSE
  184. IF( BNORM.GE.RESID ) THEN
  185. RESID = ( RESID / BNORM ) / ( REALMN*EPS )
  186. ELSE
  187. IF( BNORM.LT.ONE ) THEN
  188. RESID = ( MIN( RESID, REALMN*BNORM ) / BNORM ) /
  189. $ ( REALMN*EPS )
  190. ELSE
  191. RESID = MIN( RESID / BNORM, REALMN ) / ( REALMN*EPS )
  192. END IF
  193. END IF
  194. END IF
  195. RETURN
  196. *
  197. * End of CBDT02
  198. *
  199. END