|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- *> \brief \b STPT01
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE STPT01( UPLO, DIAG, N, AP, AINVP, RCOND, WORK, RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIAG, UPLO
- * INTEGER N
- * REAL RCOND, RESID
- * ..
- * .. Array Arguments ..
- * REAL AINVP( * ), AP( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> STPT01 computes the residual for a triangular matrix A times its
- *> inverse when A is stored in packed format:
- *> RESID = norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ),
- *> where EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the matrix A is upper or lower triangular.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> Specifies whether or not the matrix A is unit triangular.
- *> = 'N': Non-unit triangular
- *> = 'U': Unit triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] AP
- *> \verbatim
- *> AP is REAL array, dimension (N*(N+1)/2)
- *> The original upper or lower triangular matrix A, packed
- *> columnwise in a linear array. The j-th column of A is stored
- *> in the array AP as follows:
- *> if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
- *> if UPLO = 'L',
- *> AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
- *> \endverbatim
- *>
- *> \param[in,out] AINVP
- *> \verbatim
- *> AINVP is REAL array, dimension (N*(N+1)/2)
- *> On entry, the (triangular) inverse of the matrix A, packed
- *> columnwise in a linear array as in AP.
- *> On exit, the contents of AINVP are destroyed.
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is REAL
- *> The reciprocal condition number of A, computed as
- *> 1/(norm(A) * norm(AINV)).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is REAL
- *> norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup single_lin
- *
- * =====================================================================
- SUBROUTINE STPT01( UPLO, DIAG, N, AP, AINVP, RCOND, WORK, RESID )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- CHARACTER DIAG, UPLO
- INTEGER N
- REAL RCOND, RESID
- * ..
- * .. Array Arguments ..
- REAL AINVP( * ), AP( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UNITD
- INTEGER J, JC
- REAL AINVNM, ANORM, EPS
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SLAMCH, SLANTP
- EXTERNAL LSAME, SLAMCH, SLANTP
- * ..
- * .. External Subroutines ..
- EXTERNAL STPMV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC REAL
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0.
- *
- IF( N.LE.0 ) THEN
- RCOND = ONE
- RESID = ZERO
- RETURN
- END IF
- *
- * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
- *
- EPS = SLAMCH( 'Epsilon' )
- ANORM = SLANTP( '1', UPLO, DIAG, N, AP, WORK )
- AINVNM = SLANTP( '1', UPLO, DIAG, N, AINVP, WORK )
- IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCOND = ZERO
- RESID = ONE / EPS
- RETURN
- END IF
- RCOND = ( ONE / ANORM ) / AINVNM
- *
- * Compute A * AINV, overwriting AINV.
- *
- UNITD = LSAME( DIAG, 'U' )
- IF( LSAME( UPLO, 'U' ) ) THEN
- JC = 1
- DO 10 J = 1, N
- IF( UNITD )
- $ AINVP( JC+J-1 ) = ONE
- *
- * Form the j-th column of A*AINV
- *
- CALL STPMV( 'Upper', 'No transpose', DIAG, J, AP,
- $ AINVP( JC ), 1 )
- *
- * Subtract 1 from the diagonal
- *
- AINVP( JC+J-1 ) = AINVP( JC+J-1 ) - ONE
- JC = JC + J
- 10 CONTINUE
- ELSE
- JC = 1
- DO 20 J = 1, N
- IF( UNITD )
- $ AINVP( JC ) = ONE
- *
- * Form the j-th column of A*AINV
- *
- CALL STPMV( 'Lower', 'No transpose', DIAG, N-J+1, AP( JC ),
- $ AINVP( JC ), 1 )
- *
- * Subtract 1 from the diagonal
- *
- AINVP( JC ) = AINVP( JC ) - ONE
- JC = JC + N - J + 1
- 20 CONTINUE
- END IF
- *
- * Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS)
- *
- RESID = SLANTP( '1', UPLO, 'Non-unit', N, AINVP, WORK )
- *
- RESID = ( ( RESID*RCOND ) / REAL( N ) ) / EPS
- *
- RETURN
- *
- * End of STPT01
- *
- END
|