You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

level3_syrk_threaded.c 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #ifndef CACHE_LINE_SIZE
  39. #define CACHE_LINE_SIZE 8
  40. #endif
  41. #ifndef DIVIDE_RATE
  42. #define DIVIDE_RATE 2
  43. #endif
  44. #ifndef SWITCH_RATIO
  45. #define SWITCH_RATIO 2
  46. #endif
  47. //The array of job_t may overflow the stack.
  48. //Instead, use malloc to alloc job_t.
  49. #if MAX_CPU_NUMBER > BLAS3_MEM_ALLOC_THRESHOLD
  50. #define USE_ALLOC_HEAP
  51. #endif
  52. #ifndef SYRK_LOCAL
  53. #if !defined(LOWER) && !defined(TRANS)
  54. #define SYRK_LOCAL SYRK_UN
  55. #elif !defined(LOWER) && defined(TRANS)
  56. #define SYRK_LOCAL SYRK_UT
  57. #elif defined(LOWER) && !defined(TRANS)
  58. #define SYRK_LOCAL SYRK_LN
  59. #else
  60. #define SYRK_LOCAL SYRK_LT
  61. #endif
  62. #endif
  63. typedef struct {
  64. volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
  65. } job_t;
  66. #ifndef KERNEL_OPERATION
  67. #ifndef COMPLEX
  68. #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
  69. KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y))
  70. #else
  71. #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
  72. KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y))
  73. #endif
  74. #endif
  75. #ifndef ICOPY_OPERATION
  76. #ifndef TRANS
  77. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  78. #else
  79. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  80. #endif
  81. #endif
  82. #ifndef OCOPY_OPERATION
  83. #ifdef TRANS
  84. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  85. #else
  86. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  87. #endif
  88. #endif
  89. #ifndef A
  90. #define A args -> a
  91. #endif
  92. #ifndef LDA
  93. #define LDA args -> lda
  94. #endif
  95. #ifndef C
  96. #define C args -> c
  97. #endif
  98. #ifndef LDC
  99. #define LDC args -> ldc
  100. #endif
  101. #ifndef M
  102. #define M args -> m
  103. #endif
  104. #ifndef N
  105. #define N args -> n
  106. #endif
  107. #ifndef K
  108. #define K args -> k
  109. #endif
  110. #undef TIMING
  111. #ifdef TIMING
  112. #define START_RPCC() rpcc_counter = rpcc()
  113. #define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter
  114. #else
  115. #define START_RPCC()
  116. #define STOP_RPCC(COUNTER)
  117. #endif
  118. static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  119. FLOAT *buffer[DIVIDE_RATE];
  120. BLASLONG k, lda, ldc;
  121. BLASLONG m_from, m_to, n_from, n_to;
  122. FLOAT *alpha, *beta;
  123. FLOAT *a, *c;
  124. job_t *job = (job_t *)args -> common;
  125. BLASLONG xxx, bufferside;
  126. BLASLONG ls, min_l, jjs, min_jj;
  127. BLASLONG is, min_i, div_n;
  128. BLASLONG i, current;
  129. #ifdef LOWER
  130. BLASLONG start_i;
  131. #endif
  132. #ifdef TIMING
  133. BLASLONG rpcc_counter;
  134. BLASLONG copy_A = 0;
  135. BLASLONG copy_B = 0;
  136. BLASLONG kernel = 0;
  137. BLASLONG waiting1 = 0;
  138. BLASLONG waiting2 = 0;
  139. BLASLONG waiting3 = 0;
  140. BLASLONG waiting6[MAX_CPU_NUMBER];
  141. BLASLONG ops = 0;
  142. for (i = 0; i < args -> nthreads; i++) waiting6[i] = 0;
  143. #endif
  144. k = K;
  145. a = (FLOAT *)A;
  146. c = (FLOAT *)C;
  147. lda = LDA;
  148. ldc = LDC;
  149. alpha = (FLOAT *)args -> alpha;
  150. beta = (FLOAT *)args -> beta;
  151. m_from = 0;
  152. m_to = N;
  153. /* Global Range */
  154. n_from = 0;
  155. n_to = N;
  156. if (range_n) {
  157. m_from = range_n[mypos + 0];
  158. m_to = range_n[mypos + 1];
  159. n_from = range_n[0];
  160. n_to = range_n[args -> nthreads];
  161. }
  162. if (beta) {
  163. #if !defined(COMPLEX) || defined(HERK)
  164. if (beta[0] != ONE)
  165. #else
  166. if ((beta[0] != ONE) || (beta[1] != ZERO))
  167. #endif
  168. syrk_beta(m_from, m_to, n_from, n_to, beta, c, ldc);
  169. }
  170. if ((k == 0) || (alpha == NULL)) return 0;
  171. if ((alpha[0] == ZERO)
  172. #if defined(COMPLEX) && !defined(HERK)
  173. && (alpha[1] == ZERO)
  174. #endif
  175. ) return 0;
  176. #if 0
  177. fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld n_from : %ld n_to : %ld\n", mypos, m_from, m_to, n_from, n_to);
  178. #endif
  179. div_n = ((m_to - m_from + DIVIDE_RATE - 1) / DIVIDE_RATE
  180. + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
  181. buffer[0] = sb;
  182. for (i = 1; i < DIVIDE_RATE; i++) {
  183. buffer[i] = buffer[i - 1] + GEMM_Q * div_n * COMPSIZE;
  184. }
  185. for(ls = 0; ls < k; ls += min_l){
  186. min_l = k - ls;
  187. if (min_l >= GEMM_Q * 2) {
  188. min_l = GEMM_Q;
  189. } else {
  190. if (min_l > GEMM_Q) min_l = (min_l + 1) / 2;
  191. }
  192. min_i = m_to - m_from;
  193. if (min_i >= GEMM_P * 2) {
  194. min_i = GEMM_P;
  195. } else {
  196. if (min_i > GEMM_P) {
  197. min_i = (min_i / 2 + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
  198. }
  199. }
  200. #ifdef LOWER
  201. xxx = (m_to - m_from - min_i) % GEMM_P;
  202. if (xxx) min_i -= GEMM_P - xxx;
  203. #endif
  204. START_RPCC();
  205. #ifndef LOWER
  206. ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
  207. #else
  208. ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_to - min_i, sa);
  209. #endif
  210. STOP_RPCC(copy_A);
  211. div_n = ((m_to - m_from + DIVIDE_RATE - 1) / DIVIDE_RATE
  212. + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
  213. for (xxx = m_from, bufferside = 0; xxx < m_to; xxx += div_n, bufferside ++) {
  214. START_RPCC();
  215. /* Make sure if no one is using buffer */
  216. #ifndef LOWER
  217. for (i = 0; i < mypos; i++)
  218. #else
  219. for (i = mypos + 1; i < args -> nthreads; i++)
  220. #endif
  221. while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {YIELDING;};
  222. STOP_RPCC(waiting1);
  223. #ifndef LOWER
  224. for(jjs = xxx; jjs < MIN(m_to, xxx + div_n); jjs += min_jj){
  225. min_jj = MIN(m_to, xxx + div_n) - jjs;
  226. if (xxx == m_from) {
  227. if (min_jj > min_i) min_jj = min_i;
  228. } else {
  229. if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN;
  230. }
  231. START_RPCC();
  232. OCOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs,
  233. buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE);
  234. STOP_RPCC(copy_B);
  235. START_RPCC();
  236. KERNEL_OPERATION(min_i, min_jj, min_l, alpha,
  237. sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE,
  238. c, ldc, m_from, jjs);
  239. STOP_RPCC(kernel);
  240. #ifdef TIMING
  241. ops += 2 * min_i * min_jj * min_l;
  242. #endif
  243. }
  244. #else
  245. for(jjs = xxx; jjs < MIN(m_to, xxx + div_n); jjs += min_jj){
  246. min_jj = MIN(m_to, xxx + div_n) - jjs;
  247. if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN;
  248. START_RPCC();
  249. OCOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs,
  250. buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE);
  251. STOP_RPCC(copy_B);
  252. START_RPCC();
  253. KERNEL_OPERATION(min_i, min_jj, min_l, alpha,
  254. sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE,
  255. c, ldc, m_to - min_i, jjs);
  256. STOP_RPCC(kernel);
  257. #ifdef TIMING
  258. ops += 2 * min_i * min_jj * min_l;
  259. #endif
  260. }
  261. #endif
  262. #ifndef LOWER
  263. for (i = 0; i <= mypos; i++)
  264. #else
  265. for (i = mypos; i < args -> nthreads; i++)
  266. #endif
  267. job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
  268. WMB;
  269. }
  270. #ifndef LOWER
  271. current = mypos + 1;
  272. while (current < args -> nthreads) {
  273. #else
  274. current = mypos - 1;
  275. while (current >= 0) {
  276. #endif
  277. div_n = ((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE
  278. + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
  279. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  280. START_RPCC();
  281. /* thread has to wait */
  282. while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;};
  283. STOP_RPCC(waiting2);
  284. START_RPCC();
  285. #ifndef LOWER
  286. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
  287. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  288. c, ldc,
  289. m_from,
  290. xxx);
  291. #else
  292. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
  293. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  294. c, ldc,
  295. m_to - min_i,
  296. xxx);
  297. #endif
  298. STOP_RPCC(kernel);
  299. #ifdef TIMING
  300. ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l;
  301. #endif
  302. if (m_to - m_from == min_i) {
  303. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
  304. }
  305. }
  306. #ifndef LOWER
  307. current ++;
  308. #else
  309. current --;
  310. #endif
  311. }
  312. #ifndef LOWER
  313. for(is = m_from + min_i; is < m_to; is += min_i){
  314. min_i = m_to - is;
  315. #else
  316. start_i = min_i;
  317. for(is = m_from; is < m_to - start_i; is += min_i){
  318. min_i = m_to - start_i - is;
  319. #endif
  320. if (min_i >= GEMM_P * 2) {
  321. min_i = GEMM_P;
  322. } else
  323. if (min_i > GEMM_P) {
  324. min_i = ((min_i + 1) / 2 + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
  325. }
  326. START_RPCC();
  327. ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
  328. STOP_RPCC(copy_A);
  329. current = mypos;
  330. do {
  331. div_n = ((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE
  332. + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
  333. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  334. START_RPCC();
  335. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
  336. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  337. c, ldc, is, xxx);
  338. STOP_RPCC(kernel);
  339. #ifdef TIMING
  340. ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l;
  341. #endif
  342. #ifndef LOWER
  343. if (is + min_i >= m_to) {
  344. #else
  345. if (is + min_i >= m_to - start_i) {
  346. #endif
  347. /* Thread doesn't need this buffer any more */
  348. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
  349. WMB;
  350. }
  351. }
  352. #ifndef LOWER
  353. current ++;
  354. } while (current != args -> nthreads);
  355. #else
  356. current --;
  357. } while (current >= 0);
  358. #endif
  359. }
  360. }
  361. START_RPCC();
  362. for (i = 0; i < args -> nthreads; i++) {
  363. if (i != mypos) {
  364. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  365. while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;};
  366. }
  367. }
  368. }
  369. STOP_RPCC(waiting3);
  370. #ifdef TIMING
  371. BLASLONG waiting = waiting1 + waiting2 + waiting3;
  372. BLASLONG total = copy_A + copy_B + kernel + waiting;
  373. fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2f Copy_B : %6.2f Wait1 : %6.2f Wait2 : %6.2f Wait3 : %6.2f Kernel : %6.2f",
  374. mypos, (double)copy_A /(double)total * 100., (double)copy_B /(double)total * 100.,
  375. (double)waiting1 /(double)total * 100.,
  376. (double)waiting2 /(double)total * 100.,
  377. (double)waiting3 /(double)total * 100.,
  378. (double)ops/(double)kernel / 4. * 100.);
  379. #if 0
  380. fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2ld Copy_B : %6.2ld Wait : %6.2ld\n",
  381. mypos, copy_A, copy_B, waiting);
  382. fprintf(stderr, "Waiting[%2ld] %6.2f %6.2f %6.2f\n",
  383. mypos,
  384. (double)waiting1/(double)waiting * 100.,
  385. (double)waiting2/(double)waiting * 100.,
  386. (double)waiting3/(double)waiting * 100.);
  387. #endif
  388. fprintf(stderr, "\n");
  389. #endif
  390. return 0;
  391. }
  392. int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  393. blas_arg_t newarg;
  394. #ifndef USE_ALLOC_HEAP
  395. job_t job[MAX_CPU_NUMBER];
  396. #else
  397. job_t * job = NULL;
  398. #endif
  399. blas_queue_t queue[MAX_CPU_NUMBER];
  400. BLASLONG range[MAX_CPU_NUMBER + 100];
  401. BLASLONG num_cpu;
  402. BLASLONG nthreads = args -> nthreads;
  403. BLASLONG width, i, j, k;
  404. BLASLONG n, n_from, n_to;
  405. int mode, mask;
  406. double dnum;
  407. if ((nthreads == 1) || (args -> n < nthreads * SWITCH_RATIO)) {
  408. SYRK_LOCAL(args, range_m, range_n, sa, sb, 0);
  409. return 0;
  410. }
  411. #ifndef COMPLEX
  412. #ifdef XDOUBLE
  413. mode = BLAS_XDOUBLE | BLAS_REAL;
  414. mask = MAX(QGEMM_UNROLL_M, QGEMM_UNROLL_N) - 1;
  415. #elif defined(DOUBLE)
  416. mode = BLAS_DOUBLE | BLAS_REAL;
  417. mask = DGEMM_UNROLL_MN - 1;
  418. #else
  419. mode = BLAS_SINGLE | BLAS_REAL;
  420. mask = SGEMM_UNROLL_MN - 1;
  421. #endif
  422. #else
  423. #ifdef XDOUBLE
  424. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  425. mask = MAX(XGEMM_UNROLL_M, XGEMM_UNROLL_N) - 1;
  426. #elif defined(DOUBLE)
  427. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  428. mask = ZGEMM_UNROLL_MN - 1;
  429. #else
  430. mode = BLAS_SINGLE | BLAS_COMPLEX;
  431. mask = CGEMM_UNROLL_MN - 1;
  432. #endif
  433. #endif
  434. newarg.m = args -> m;
  435. newarg.n = args -> n;
  436. newarg.k = args -> k;
  437. newarg.a = args -> a;
  438. newarg.b = args -> b;
  439. newarg.c = args -> c;
  440. newarg.lda = args -> lda;
  441. newarg.ldb = args -> ldb;
  442. newarg.ldc = args -> ldc;
  443. newarg.alpha = args -> alpha;
  444. newarg.beta = args -> beta;
  445. #ifdef USE_ALLOC_HEAP
  446. job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
  447. if(job==NULL){
  448. fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
  449. exit(1);
  450. }
  451. #endif
  452. newarg.common = (void *)job;
  453. if (!range_n) {
  454. n_from = 0;
  455. n_to = args -> n;
  456. } else {
  457. n_from = range_n[0];
  458. n_to = range_n[1] - range_n[0];
  459. }
  460. #ifndef LOWER
  461. range[MAX_CPU_NUMBER] = n_to - n_from;
  462. range[0] = 0;
  463. num_cpu = 0;
  464. i = 0;
  465. n = n_to - n_from;
  466. dnum = (double)n * (double)n /(double)nthreads;
  467. while (i < n){
  468. if (nthreads - num_cpu > 1) {
  469. double di = (double)i;
  470. width = (((BLASLONG)(sqrt(di * di + dnum) - di) + mask) & ~mask);
  471. if (num_cpu == 0) width = n - ((n - width) & ~mask);
  472. if ((width > n - i) || (width < mask)) width = n - i;
  473. } else {
  474. width = n - i;
  475. }
  476. range[MAX_CPU_NUMBER - num_cpu - 1] = range[MAX_CPU_NUMBER - num_cpu] - width;
  477. queue[num_cpu].mode = mode;
  478. queue[num_cpu].routine = inner_thread;
  479. queue[num_cpu].args = &newarg;
  480. queue[num_cpu].range_m = range_m;
  481. queue[num_cpu].sa = NULL;
  482. queue[num_cpu].sb = NULL;
  483. queue[num_cpu].next = &queue[num_cpu + 1];
  484. num_cpu ++;
  485. i += width;
  486. }
  487. for (i = 0; i < num_cpu; i ++) queue[i].range_n = &range[MAX_CPU_NUMBER - num_cpu];
  488. #else
  489. range[0] = 0;
  490. num_cpu = 0;
  491. i = 0;
  492. n = n_to - n_from;
  493. dnum = (double)n * (double)n /(double)nthreads;
  494. while (i < n){
  495. if (nthreads - num_cpu > 1) {
  496. double di = (double)i;
  497. width = (((BLASLONG)(sqrt(di * di + dnum) - di) + mask) & ~mask);
  498. if ((width > n - i) || (width < mask)) width = n - i;
  499. } else {
  500. width = n - i;
  501. }
  502. range[num_cpu + 1] = range[num_cpu] + width;
  503. queue[num_cpu].mode = mode;
  504. queue[num_cpu].routine = inner_thread;
  505. queue[num_cpu].args = &newarg;
  506. queue[num_cpu].range_m = range_m;
  507. queue[num_cpu].range_n = range;
  508. queue[num_cpu].sa = NULL;
  509. queue[num_cpu].sb = NULL;
  510. queue[num_cpu].next = &queue[num_cpu + 1];
  511. num_cpu ++;
  512. i += width;
  513. }
  514. #endif
  515. newarg.nthreads = num_cpu;
  516. if (num_cpu) {
  517. for (j = 0; j < num_cpu; j++) {
  518. for (i = 0; i < num_cpu; i++) {
  519. for (k = 0; k < DIVIDE_RATE; k++) {
  520. job[j].working[i][CACHE_LINE_SIZE * k] = 0;
  521. }
  522. }
  523. }
  524. queue[0].sa = sa;
  525. queue[0].sb = sb;
  526. queue[num_cpu - 1].next = NULL;
  527. exec_blas(num_cpu, queue);
  528. }
  529. #ifdef USE_ALLOC_HEAP
  530. free(job);
  531. #endif
  532. return 0;
  533. }