You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlauu2f.f 4.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143
  1. SUBROUTINE ZLAUU2F( UPLO, N, A, LDA, INFO )
  2. *
  3. * -- LAPACK auxiliary routine (version 3.1) --
  4. * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  5. * November 2006
  6. *
  7. * .. Scalar Arguments ..
  8. CHARACTER UPLO
  9. INTEGER INFO, LDA, N
  10. * ..
  11. * .. Array Arguments ..
  12. COMPLEX*16 A( LDA, * )
  13. * ..
  14. *
  15. * Purpose
  16. * =======
  17. *
  18. * ZLAUU2 computes the product U * U' or L' * L, where the triangular
  19. * factor U or L is stored in the upper or lower triangular part of
  20. * the array A.
  21. *
  22. * If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
  23. * overwriting the factor U in A.
  24. * If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
  25. * overwriting the factor L in A.
  26. *
  27. * This is the unblocked form of the algorithm, calling Level 2 BLAS.
  28. *
  29. * Arguments
  30. * =========
  31. *
  32. * UPLO (input) CHARACTER*1
  33. * Specifies whether the triangular factor stored in the array A
  34. * is upper or lower triangular:
  35. * = 'U': Upper triangular
  36. * = 'L': Lower triangular
  37. *
  38. * N (input) INTEGER
  39. * The order of the triangular factor U or L. N >= 0.
  40. *
  41. * A (input/output) COMPLEX*16 array, dimension (LDA,N)
  42. * On entry, the triangular factor U or L.
  43. * On exit, if UPLO = 'U', the upper triangle of A is
  44. * overwritten with the upper triangle of the product U * U';
  45. * if UPLO = 'L', the lower triangle of A is overwritten with
  46. * the lower triangle of the product L' * L.
  47. *
  48. * LDA (input) INTEGER
  49. * The leading dimension of the array A. LDA >= max(1,N).
  50. *
  51. * INFO (output) INTEGER
  52. * = 0: successful exit
  53. * < 0: if INFO = -k, the k-th argument had an illegal value
  54. *
  55. * =====================================================================
  56. *
  57. * .. Parameters ..
  58. COMPLEX*16 ONE
  59. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
  60. * ..
  61. * .. Local Scalars ..
  62. LOGICAL UPPER
  63. INTEGER I
  64. DOUBLE PRECISION AII
  65. * ..
  66. * .. External Functions ..
  67. LOGICAL LSAME
  68. COMPLEX*16 ZDOTC
  69. EXTERNAL LSAME, ZDOTC
  70. * ..
  71. * .. External Subroutines ..
  72. EXTERNAL XERBLA, ZDSCAL, ZGEMV, ZLACGV
  73. * ..
  74. * .. Intrinsic Functions ..
  75. INTRINSIC DBLE, DCMPLX, MAX
  76. * ..
  77. * .. Executable Statements ..
  78. *
  79. * Test the input parameters.
  80. *
  81. INFO = 0
  82. UPPER = LSAME( UPLO, 'U' )
  83. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  84. INFO = -1
  85. ELSE IF( N.LT.0 ) THEN
  86. INFO = -2
  87. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  88. INFO = -4
  89. END IF
  90. IF( INFO.NE.0 ) THEN
  91. CALL XERBLA( 'ZLAUU2', -INFO )
  92. RETURN
  93. END IF
  94. *
  95. * Quick return if possible
  96. *
  97. IF( N.EQ.0 )
  98. $ RETURN
  99. *
  100. IF( UPPER ) THEN
  101. *
  102. * Compute the product U * U'.
  103. *
  104. DO 10 I = 1, N
  105. AII = A( I, I )
  106. IF( I.LT.N ) THEN
  107. A( I, I ) = AII*AII + DBLE( ZDOTC( N-I, A( I, I+1 ), LDA,
  108. $ A( I, I+1 ), LDA ) )
  109. CALL ZLACGV( N-I, A( I, I+1 ), LDA )
  110. CALL ZGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
  111. $ LDA, A( I, I+1 ), LDA, DCMPLX( AII ),
  112. $ A( 1, I ), 1 )
  113. CALL ZLACGV( N-I, A( I, I+1 ), LDA )
  114. ELSE
  115. CALL ZDSCAL( I, AII, A( 1, I ), 1 )
  116. END IF
  117. 10 CONTINUE
  118. *
  119. ELSE
  120. *
  121. * Compute the product L' * L.
  122. *
  123. DO 20 I = 1, N
  124. AII = A( I, I )
  125. IF( I.LT.N ) THEN
  126. A( I, I ) = AII*AII + DBLE( ZDOTC( N-I, A( I+1, I ), 1,
  127. $ A( I+1, I ), 1 ) )
  128. CALL ZLACGV( I-1, A( I, 1 ), LDA )
  129. CALL ZGEMV( 'Conjugate transpose', N-I, I-1, ONE,
  130. $ A( I+1, 1 ), LDA, A( I+1, I ), 1,
  131. $ DCMPLX( AII ), A( I, 1 ), LDA )
  132. CALL ZLACGV( I-1, A( I, 1 ), LDA )
  133. ELSE
  134. CALL ZDSCAL( I, AII, A( I, 1 ), LDA )
  135. END IF
  136. 20 CONTINUE
  137. END IF
  138. *
  139. RETURN
  140. *
  141. * End of ZLAUU2
  142. *
  143. END