You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsfrk.f 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541
  1. *> \brief \b DSFRK performs a symmetric rank-k operation for matrix in RFP format.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSFRK + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsfrk.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsfrk.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsfrk.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
  22. * C )
  23. *
  24. * .. Scalar Arguments ..
  25. * DOUBLE PRECISION ALPHA, BETA
  26. * INTEGER K, LDA, N
  27. * CHARACTER TRANS, TRANSR, UPLO
  28. * ..
  29. * .. Array Arguments ..
  30. * DOUBLE PRECISION A( LDA, * ), C( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> Level 3 BLAS like routine for C in RFP Format.
  40. *>
  41. *> DSFRK performs one of the symmetric rank--k operations
  42. *>
  43. *> C := alpha*A*A**T + beta*C,
  44. *>
  45. *> or
  46. *>
  47. *> C := alpha*A**T*A + beta*C,
  48. *>
  49. *> where alpha and beta are real scalars, C is an n--by--n symmetric
  50. *> matrix and A is an n--by--k matrix in the first case and a k--by--n
  51. *> matrix in the second case.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] TRANSR
  58. *> \verbatim
  59. *> TRANSR is CHARACTER*1
  60. *> = 'N': The Normal Form of RFP A is stored;
  61. *> = 'T': The Transpose Form of RFP A is stored.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] UPLO
  65. *> \verbatim
  66. *> UPLO is CHARACTER*1
  67. *> On entry, UPLO specifies whether the upper or lower
  68. *> triangular part of the array C is to be referenced as
  69. *> follows:
  70. *>
  71. *> UPLO = 'U' or 'u' Only the upper triangular part of C
  72. *> is to be referenced.
  73. *>
  74. *> UPLO = 'L' or 'l' Only the lower triangular part of C
  75. *> is to be referenced.
  76. *>
  77. *> Unchanged on exit.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] TRANS
  81. *> \verbatim
  82. *> TRANS is CHARACTER*1
  83. *> On entry, TRANS specifies the operation to be performed as
  84. *> follows:
  85. *>
  86. *> TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C.
  87. *>
  88. *> TRANS = 'T' or 't' C := alpha*A**T*A + beta*C.
  89. *>
  90. *> Unchanged on exit.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] N
  94. *> \verbatim
  95. *> N is INTEGER
  96. *> On entry, N specifies the order of the matrix C. N must be
  97. *> at least zero.
  98. *> Unchanged on exit.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] K
  102. *> \verbatim
  103. *> K is INTEGER
  104. *> On entry with TRANS = 'N' or 'n', K specifies the number
  105. *> of columns of the matrix A, and on entry with TRANS = 'T'
  106. *> or 't', K specifies the number of rows of the matrix A. K
  107. *> must be at least zero.
  108. *> Unchanged on exit.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] ALPHA
  112. *> \verbatim
  113. *> ALPHA is DOUBLE PRECISION
  114. *> On entry, ALPHA specifies the scalar alpha.
  115. *> Unchanged on exit.
  116. *> \endverbatim
  117. *>
  118. *> \param[in] A
  119. *> \verbatim
  120. *> A is DOUBLE PRECISION array, dimension (LDA,ka)
  121. *> where KA
  122. *> is K when TRANS = 'N' or 'n', and is N otherwise. Before
  123. *> entry with TRANS = 'N' or 'n', the leading N--by--K part of
  124. *> the array A must contain the matrix A, otherwise the leading
  125. *> K--by--N part of the array A must contain the matrix A.
  126. *> Unchanged on exit.
  127. *> \endverbatim
  128. *>
  129. *> \param[in] LDA
  130. *> \verbatim
  131. *> LDA is INTEGER
  132. *> On entry, LDA specifies the first dimension of A as declared
  133. *> in the calling (sub) program. When TRANS = 'N' or 'n'
  134. *> then LDA must be at least max( 1, n ), otherwise LDA must
  135. *> be at least max( 1, k ).
  136. *> Unchanged on exit.
  137. *> \endverbatim
  138. *>
  139. *> \param[in] BETA
  140. *> \verbatim
  141. *> BETA is DOUBLE PRECISION
  142. *> On entry, BETA specifies the scalar beta.
  143. *> Unchanged on exit.
  144. *> \endverbatim
  145. *>
  146. *> \param[in,out] C
  147. *> \verbatim
  148. *> C is DOUBLE PRECISION array, dimension (NT)
  149. *> NT = N*(N+1)/2. On entry, the symmetric matrix C in RFP
  150. *> Format. RFP Format is described by TRANSR, UPLO and N.
  151. *> \endverbatim
  152. *
  153. * Authors:
  154. * ========
  155. *
  156. *> \author Univ. of Tennessee
  157. *> \author Univ. of California Berkeley
  158. *> \author Univ. of Colorado Denver
  159. *> \author NAG Ltd.
  160. *
  161. *> \ingroup doubleOTHERcomputational
  162. *
  163. * =====================================================================
  164. SUBROUTINE DSFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
  165. $ C )
  166. *
  167. * -- LAPACK computational routine --
  168. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  169. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  170. *
  171. * .. Scalar Arguments ..
  172. DOUBLE PRECISION ALPHA, BETA
  173. INTEGER K, LDA, N
  174. CHARACTER TRANS, TRANSR, UPLO
  175. * ..
  176. * .. Array Arguments ..
  177. DOUBLE PRECISION A( LDA, * ), C( * )
  178. * ..
  179. *
  180. * =====================================================================
  181. *
  182. * ..
  183. * .. Parameters ..
  184. DOUBLE PRECISION ONE, ZERO
  185. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  186. * ..
  187. * .. Local Scalars ..
  188. LOGICAL LOWER, NORMALTRANSR, NISODD, NOTRANS
  189. INTEGER INFO, NROWA, J, NK, N1, N2
  190. * ..
  191. * .. External Functions ..
  192. LOGICAL LSAME
  193. EXTERNAL LSAME
  194. * ..
  195. * .. External Subroutines ..
  196. EXTERNAL XERBLA, DGEMM, DSYRK
  197. * ..
  198. * .. Intrinsic Functions ..
  199. INTRINSIC MAX
  200. * ..
  201. * .. Executable Statements ..
  202. *
  203. * Test the input parameters.
  204. *
  205. INFO = 0
  206. NORMALTRANSR = LSAME( TRANSR, 'N' )
  207. LOWER = LSAME( UPLO, 'L' )
  208. NOTRANS = LSAME( TRANS, 'N' )
  209. *
  210. IF( NOTRANS ) THEN
  211. NROWA = N
  212. ELSE
  213. NROWA = K
  214. END IF
  215. *
  216. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  217. INFO = -1
  218. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  219. INFO = -2
  220. ELSE IF( .NOT.NOTRANS .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
  221. INFO = -3
  222. ELSE IF( N.LT.0 ) THEN
  223. INFO = -4
  224. ELSE IF( K.LT.0 ) THEN
  225. INFO = -5
  226. ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN
  227. INFO = -8
  228. END IF
  229. IF( INFO.NE.0 ) THEN
  230. CALL XERBLA( 'DSFRK ', -INFO )
  231. RETURN
  232. END IF
  233. *
  234. * Quick return if possible.
  235. *
  236. * The quick return case: ((ALPHA.EQ.0).AND.(BETA.NE.ZERO)) is not
  237. * done (it is in DSYRK for example) and left in the general case.
  238. *
  239. IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND.
  240. $ ( BETA.EQ.ONE ) ) )RETURN
  241. *
  242. IF( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ZERO ) ) THEN
  243. DO J = 1, ( ( N*( N+1 ) ) / 2 )
  244. C( J ) = ZERO
  245. END DO
  246. RETURN
  247. END IF
  248. *
  249. * C is N-by-N.
  250. * If N is odd, set NISODD = .TRUE., and N1 and N2.
  251. * If N is even, NISODD = .FALSE., and NK.
  252. *
  253. IF( MOD( N, 2 ).EQ.0 ) THEN
  254. NISODD = .FALSE.
  255. NK = N / 2
  256. ELSE
  257. NISODD = .TRUE.
  258. IF( LOWER ) THEN
  259. N2 = N / 2
  260. N1 = N - N2
  261. ELSE
  262. N1 = N / 2
  263. N2 = N - N1
  264. END IF
  265. END IF
  266. *
  267. IF( NISODD ) THEN
  268. *
  269. * N is odd
  270. *
  271. IF( NORMALTRANSR ) THEN
  272. *
  273. * N is odd and TRANSR = 'N'
  274. *
  275. IF( LOWER ) THEN
  276. *
  277. * N is odd, TRANSR = 'N', and UPLO = 'L'
  278. *
  279. IF( NOTRANS ) THEN
  280. *
  281. * N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  282. *
  283. CALL DSYRK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  284. $ BETA, C( 1 ), N )
  285. CALL DSYRK( 'U', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  286. $ BETA, C( N+1 ), N )
  287. CALL DGEMM( 'N', 'T', N2, N1, K, ALPHA, A( N1+1, 1 ),
  288. $ LDA, A( 1, 1 ), LDA, BETA, C( N1+1 ), N )
  289. *
  290. ELSE
  291. *
  292. * N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'T'
  293. *
  294. CALL DSYRK( 'L', 'T', N1, K, ALPHA, A( 1, 1 ), LDA,
  295. $ BETA, C( 1 ), N )
  296. CALL DSYRK( 'U', 'T', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  297. $ BETA, C( N+1 ), N )
  298. CALL DGEMM( 'T', 'N', N2, N1, K, ALPHA, A( 1, N1+1 ),
  299. $ LDA, A( 1, 1 ), LDA, BETA, C( N1+1 ), N )
  300. *
  301. END IF
  302. *
  303. ELSE
  304. *
  305. * N is odd, TRANSR = 'N', and UPLO = 'U'
  306. *
  307. IF( NOTRANS ) THEN
  308. *
  309. * N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  310. *
  311. CALL DSYRK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  312. $ BETA, C( N2+1 ), N )
  313. CALL DSYRK( 'U', 'N', N2, K, ALPHA, A( N2, 1 ), LDA,
  314. $ BETA, C( N1+1 ), N )
  315. CALL DGEMM( 'N', 'T', N1, N2, K, ALPHA, A( 1, 1 ),
  316. $ LDA, A( N2, 1 ), LDA, BETA, C( 1 ), N )
  317. *
  318. ELSE
  319. *
  320. * N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'T'
  321. *
  322. CALL DSYRK( 'L', 'T', N1, K, ALPHA, A( 1, 1 ), LDA,
  323. $ BETA, C( N2+1 ), N )
  324. CALL DSYRK( 'U', 'T', N2, K, ALPHA, A( 1, N2 ), LDA,
  325. $ BETA, C( N1+1 ), N )
  326. CALL DGEMM( 'T', 'N', N1, N2, K, ALPHA, A( 1, 1 ),
  327. $ LDA, A( 1, N2 ), LDA, BETA, C( 1 ), N )
  328. *
  329. END IF
  330. *
  331. END IF
  332. *
  333. ELSE
  334. *
  335. * N is odd, and TRANSR = 'T'
  336. *
  337. IF( LOWER ) THEN
  338. *
  339. * N is odd, TRANSR = 'T', and UPLO = 'L'
  340. *
  341. IF( NOTRANS ) THEN
  342. *
  343. * N is odd, TRANSR = 'T', UPLO = 'L', and TRANS = 'N'
  344. *
  345. CALL DSYRK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  346. $ BETA, C( 1 ), N1 )
  347. CALL DSYRK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  348. $ BETA, C( 2 ), N1 )
  349. CALL DGEMM( 'N', 'T', N1, N2, K, ALPHA, A( 1, 1 ),
  350. $ LDA, A( N1+1, 1 ), LDA, BETA,
  351. $ C( N1*N1+1 ), N1 )
  352. *
  353. ELSE
  354. *
  355. * N is odd, TRANSR = 'T', UPLO = 'L', and TRANS = 'T'
  356. *
  357. CALL DSYRK( 'U', 'T', N1, K, ALPHA, A( 1, 1 ), LDA,
  358. $ BETA, C( 1 ), N1 )
  359. CALL DSYRK( 'L', 'T', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  360. $ BETA, C( 2 ), N1 )
  361. CALL DGEMM( 'T', 'N', N1, N2, K, ALPHA, A( 1, 1 ),
  362. $ LDA, A( 1, N1+1 ), LDA, BETA,
  363. $ C( N1*N1+1 ), N1 )
  364. *
  365. END IF
  366. *
  367. ELSE
  368. *
  369. * N is odd, TRANSR = 'T', and UPLO = 'U'
  370. *
  371. IF( NOTRANS ) THEN
  372. *
  373. * N is odd, TRANSR = 'T', UPLO = 'U', and TRANS = 'N'
  374. *
  375. CALL DSYRK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  376. $ BETA, C( N2*N2+1 ), N2 )
  377. CALL DSYRK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  378. $ BETA, C( N1*N2+1 ), N2 )
  379. CALL DGEMM( 'N', 'T', N2, N1, K, ALPHA, A( N1+1, 1 ),
  380. $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), N2 )
  381. *
  382. ELSE
  383. *
  384. * N is odd, TRANSR = 'T', UPLO = 'U', and TRANS = 'T'
  385. *
  386. CALL DSYRK( 'U', 'T', N1, K, ALPHA, A( 1, 1 ), LDA,
  387. $ BETA, C( N2*N2+1 ), N2 )
  388. CALL DSYRK( 'L', 'T', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  389. $ BETA, C( N1*N2+1 ), N2 )
  390. CALL DGEMM( 'T', 'N', N2, N1, K, ALPHA, A( 1, N1+1 ),
  391. $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), N2 )
  392. *
  393. END IF
  394. *
  395. END IF
  396. *
  397. END IF
  398. *
  399. ELSE
  400. *
  401. * N is even
  402. *
  403. IF( NORMALTRANSR ) THEN
  404. *
  405. * N is even and TRANSR = 'N'
  406. *
  407. IF( LOWER ) THEN
  408. *
  409. * N is even, TRANSR = 'N', and UPLO = 'L'
  410. *
  411. IF( NOTRANS ) THEN
  412. *
  413. * N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  414. *
  415. CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  416. $ BETA, C( 2 ), N+1 )
  417. CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  418. $ BETA, C( 1 ), N+1 )
  419. CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( NK+1, 1 ),
  420. $ LDA, A( 1, 1 ), LDA, BETA, C( NK+2 ),
  421. $ N+1 )
  422. *
  423. ELSE
  424. *
  425. * N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'T'
  426. *
  427. CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, 1 ), LDA,
  428. $ BETA, C( 2 ), N+1 )
  429. CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  430. $ BETA, C( 1 ), N+1 )
  431. CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, NK+1 ),
  432. $ LDA, A( 1, 1 ), LDA, BETA, C( NK+2 ),
  433. $ N+1 )
  434. *
  435. END IF
  436. *
  437. ELSE
  438. *
  439. * N is even, TRANSR = 'N', and UPLO = 'U'
  440. *
  441. IF( NOTRANS ) THEN
  442. *
  443. * N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  444. *
  445. CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  446. $ BETA, C( NK+2 ), N+1 )
  447. CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  448. $ BETA, C( NK+1 ), N+1 )
  449. CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( 1, 1 ),
  450. $ LDA, A( NK+1, 1 ), LDA, BETA, C( 1 ),
  451. $ N+1 )
  452. *
  453. ELSE
  454. *
  455. * N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'T'
  456. *
  457. CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, 1 ), LDA,
  458. $ BETA, C( NK+2 ), N+1 )
  459. CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  460. $ BETA, C( NK+1 ), N+1 )
  461. CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, 1 ),
  462. $ LDA, A( 1, NK+1 ), LDA, BETA, C( 1 ),
  463. $ N+1 )
  464. *
  465. END IF
  466. *
  467. END IF
  468. *
  469. ELSE
  470. *
  471. * N is even, and TRANSR = 'T'
  472. *
  473. IF( LOWER ) THEN
  474. *
  475. * N is even, TRANSR = 'T', and UPLO = 'L'
  476. *
  477. IF( NOTRANS ) THEN
  478. *
  479. * N is even, TRANSR = 'T', UPLO = 'L', and TRANS = 'N'
  480. *
  481. CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  482. $ BETA, C( NK+1 ), NK )
  483. CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  484. $ BETA, C( 1 ), NK )
  485. CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( 1, 1 ),
  486. $ LDA, A( NK+1, 1 ), LDA, BETA,
  487. $ C( ( ( NK+1 )*NK )+1 ), NK )
  488. *
  489. ELSE
  490. *
  491. * N is even, TRANSR = 'T', UPLO = 'L', and TRANS = 'T'
  492. *
  493. CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, 1 ), LDA,
  494. $ BETA, C( NK+1 ), NK )
  495. CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  496. $ BETA, C( 1 ), NK )
  497. CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, 1 ),
  498. $ LDA, A( 1, NK+1 ), LDA, BETA,
  499. $ C( ( ( NK+1 )*NK )+1 ), NK )
  500. *
  501. END IF
  502. *
  503. ELSE
  504. *
  505. * N is even, TRANSR = 'T', and UPLO = 'U'
  506. *
  507. IF( NOTRANS ) THEN
  508. *
  509. * N is even, TRANSR = 'T', UPLO = 'U', and TRANS = 'N'
  510. *
  511. CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  512. $ BETA, C( NK*( NK+1 )+1 ), NK )
  513. CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  514. $ BETA, C( NK*NK+1 ), NK )
  515. CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( NK+1, 1 ),
  516. $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), NK )
  517. *
  518. ELSE
  519. *
  520. * N is even, TRANSR = 'T', UPLO = 'U', and TRANS = 'T'
  521. *
  522. CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, 1 ), LDA,
  523. $ BETA, C( NK*( NK+1 )+1 ), NK )
  524. CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  525. $ BETA, C( NK*NK+1 ), NK )
  526. CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, NK+1 ),
  527. $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), NK )
  528. *
  529. END IF
  530. *
  531. END IF
  532. *
  533. END IF
  534. *
  535. END IF
  536. *
  537. RETURN
  538. *
  539. * End of DSFRK
  540. *
  541. END