You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dpbsvx.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542
  1. *> \brief <b> DPBSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DPBSVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpbsvx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpbsvx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpbsvx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
  22. * EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
  23. * WORK, IWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER EQUED, FACT, UPLO
  27. * INTEGER INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
  28. * DOUBLE PRECISION RCOND
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IWORK( * )
  32. * DOUBLE PRECISION AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  33. * $ BERR( * ), FERR( * ), S( * ), WORK( * ),
  34. * $ X( LDX, * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> DPBSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
  44. *> compute the solution to a real system of linear equations
  45. *> A * X = B,
  46. *> where A is an N-by-N symmetric positive definite band matrix and X
  47. *> and B are N-by-NRHS matrices.
  48. *>
  49. *> Error bounds on the solution and a condition estimate are also
  50. *> provided.
  51. *> \endverbatim
  52. *
  53. *> \par Description:
  54. * =================
  55. *>
  56. *> \verbatim
  57. *>
  58. *> The following steps are performed:
  59. *>
  60. *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
  61. *> the system:
  62. *> diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
  63. *> Whether or not the system will be equilibrated depends on the
  64. *> scaling of the matrix A, but if equilibration is used, A is
  65. *> overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
  66. *>
  67. *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
  68. *> factor the matrix A (after equilibration if FACT = 'E') as
  69. *> A = U**T * U, if UPLO = 'U', or
  70. *> A = L * L**T, if UPLO = 'L',
  71. *> where U is an upper triangular band matrix, and L is a lower
  72. *> triangular band matrix.
  73. *>
  74. *> 3. If the leading principal minor of order i is not positive,
  75. *> then the routine returns with INFO = i. Otherwise, the factored
  76. *> form of A is used to estimate the condition number of the matrix
  77. *> A. If the reciprocal of the condition number is less than machine
  78. *> precision, INFO = N+1 is returned as a warning, but the routine
  79. *> still goes on to solve for X and compute error bounds as
  80. *> described below.
  81. *>
  82. *> 4. The system of equations is solved for X using the factored form
  83. *> of A.
  84. *>
  85. *> 5. Iterative refinement is applied to improve the computed solution
  86. *> matrix and calculate error bounds and backward error estimates
  87. *> for it.
  88. *>
  89. *> 6. If equilibration was used, the matrix X is premultiplied by
  90. *> diag(S) so that it solves the original system before
  91. *> equilibration.
  92. *> \endverbatim
  93. *
  94. * Arguments:
  95. * ==========
  96. *
  97. *> \param[in] FACT
  98. *> \verbatim
  99. *> FACT is CHARACTER*1
  100. *> Specifies whether or not the factored form of the matrix A is
  101. *> supplied on entry, and if not, whether the matrix A should be
  102. *> equilibrated before it is factored.
  103. *> = 'F': On entry, AFB contains the factored form of A.
  104. *> If EQUED = 'Y', the matrix A has been equilibrated
  105. *> with scaling factors given by S. AB and AFB will not
  106. *> be modified.
  107. *> = 'N': The matrix A will be copied to AFB and factored.
  108. *> = 'E': The matrix A will be equilibrated if necessary, then
  109. *> copied to AFB and factored.
  110. *> \endverbatim
  111. *>
  112. *> \param[in] UPLO
  113. *> \verbatim
  114. *> UPLO is CHARACTER*1
  115. *> = 'U': Upper triangle of A is stored;
  116. *> = 'L': Lower triangle of A is stored.
  117. *> \endverbatim
  118. *>
  119. *> \param[in] N
  120. *> \verbatim
  121. *> N is INTEGER
  122. *> The number of linear equations, i.e., the order of the
  123. *> matrix A. N >= 0.
  124. *> \endverbatim
  125. *>
  126. *> \param[in] KD
  127. *> \verbatim
  128. *> KD is INTEGER
  129. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  130. *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
  131. *> \endverbatim
  132. *>
  133. *> \param[in] NRHS
  134. *> \verbatim
  135. *> NRHS is INTEGER
  136. *> The number of right-hand sides, i.e., the number of columns
  137. *> of the matrices B and X. NRHS >= 0.
  138. *> \endverbatim
  139. *>
  140. *> \param[in,out] AB
  141. *> \verbatim
  142. *> AB is DOUBLE PRECISION array, dimension (LDAB,N)
  143. *> On entry, the upper or lower triangle of the symmetric band
  144. *> matrix A, stored in the first KD+1 rows of the array, except
  145. *> if FACT = 'F' and EQUED = 'Y', then A must contain the
  146. *> equilibrated matrix diag(S)*A*diag(S). The j-th column of A
  147. *> is stored in the j-th column of the array AB as follows:
  148. *> if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
  149. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
  150. *> See below for further details.
  151. *>
  152. *> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  153. *> diag(S)*A*diag(S).
  154. *> \endverbatim
  155. *>
  156. *> \param[in] LDAB
  157. *> \verbatim
  158. *> LDAB is INTEGER
  159. *> The leading dimension of the array A. LDAB >= KD+1.
  160. *> \endverbatim
  161. *>
  162. *> \param[in,out] AFB
  163. *> \verbatim
  164. *> AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
  165. *> If FACT = 'F', then AFB is an input argument and on entry
  166. *> contains the triangular factor U or L from the Cholesky
  167. *> factorization A = U**T*U or A = L*L**T of the band matrix
  168. *> A, in the same storage format as A (see AB). If EQUED = 'Y',
  169. *> then AFB is the factored form of the equilibrated matrix A.
  170. *>
  171. *> If FACT = 'N', then AFB is an output argument and on exit
  172. *> returns the triangular factor U or L from the Cholesky
  173. *> factorization A = U**T*U or A = L*L**T.
  174. *>
  175. *> If FACT = 'E', then AFB is an output argument and on exit
  176. *> returns the triangular factor U or L from the Cholesky
  177. *> factorization A = U**T*U or A = L*L**T of the equilibrated
  178. *> matrix A (see the description of A for the form of the
  179. *> equilibrated matrix).
  180. *> \endverbatim
  181. *>
  182. *> \param[in] LDAFB
  183. *> \verbatim
  184. *> LDAFB is INTEGER
  185. *> The leading dimension of the array AFB. LDAFB >= KD+1.
  186. *> \endverbatim
  187. *>
  188. *> \param[in,out] EQUED
  189. *> \verbatim
  190. *> EQUED is CHARACTER*1
  191. *> Specifies the form of equilibration that was done.
  192. *> = 'N': No equilibration (always true if FACT = 'N').
  193. *> = 'Y': Equilibration was done, i.e., A has been replaced by
  194. *> diag(S) * A * diag(S).
  195. *> EQUED is an input argument if FACT = 'F'; otherwise, it is an
  196. *> output argument.
  197. *> \endverbatim
  198. *>
  199. *> \param[in,out] S
  200. *> \verbatim
  201. *> S is DOUBLE PRECISION array, dimension (N)
  202. *> The scale factors for A; not accessed if EQUED = 'N'. S is
  203. *> an input argument if FACT = 'F'; otherwise, S is an output
  204. *> argument. If FACT = 'F' and EQUED = 'Y', each element of S
  205. *> must be positive.
  206. *> \endverbatim
  207. *>
  208. *> \param[in,out] B
  209. *> \verbatim
  210. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  211. *> On entry, the N-by-NRHS right hand side matrix B.
  212. *> On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
  213. *> B is overwritten by diag(S) * B.
  214. *> \endverbatim
  215. *>
  216. *> \param[in] LDB
  217. *> \verbatim
  218. *> LDB is INTEGER
  219. *> The leading dimension of the array B. LDB >= max(1,N).
  220. *> \endverbatim
  221. *>
  222. *> \param[out] X
  223. *> \verbatim
  224. *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  225. *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
  226. *> the original system of equations. Note that if EQUED = 'Y',
  227. *> A and B are modified on exit, and the solution to the
  228. *> equilibrated system is inv(diag(S))*X.
  229. *> \endverbatim
  230. *>
  231. *> \param[in] LDX
  232. *> \verbatim
  233. *> LDX is INTEGER
  234. *> The leading dimension of the array X. LDX >= max(1,N).
  235. *> \endverbatim
  236. *>
  237. *> \param[out] RCOND
  238. *> \verbatim
  239. *> RCOND is DOUBLE PRECISION
  240. *> The estimate of the reciprocal condition number of the matrix
  241. *> A after equilibration (if done). If RCOND is less than the
  242. *> machine precision (in particular, if RCOND = 0), the matrix
  243. *> is singular to working precision. This condition is
  244. *> indicated by a return code of INFO > 0.
  245. *> \endverbatim
  246. *>
  247. *> \param[out] FERR
  248. *> \verbatim
  249. *> FERR is DOUBLE PRECISION array, dimension (NRHS)
  250. *> The estimated forward error bound for each solution vector
  251. *> X(j) (the j-th column of the solution matrix X).
  252. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  253. *> is an estimated upper bound for the magnitude of the largest
  254. *> element in (X(j) - XTRUE) divided by the magnitude of the
  255. *> largest element in X(j). The estimate is as reliable as
  256. *> the estimate for RCOND, and is almost always a slight
  257. *> overestimate of the true error.
  258. *> \endverbatim
  259. *>
  260. *> \param[out] BERR
  261. *> \verbatim
  262. *> BERR is DOUBLE PRECISION array, dimension (NRHS)
  263. *> The componentwise relative backward error of each solution
  264. *> vector X(j) (i.e., the smallest relative change in
  265. *> any element of A or B that makes X(j) an exact solution).
  266. *> \endverbatim
  267. *>
  268. *> \param[out] WORK
  269. *> \verbatim
  270. *> WORK is DOUBLE PRECISION array, dimension (3*N)
  271. *> \endverbatim
  272. *>
  273. *> \param[out] IWORK
  274. *> \verbatim
  275. *> IWORK is INTEGER array, dimension (N)
  276. *> \endverbatim
  277. *>
  278. *> \param[out] INFO
  279. *> \verbatim
  280. *> INFO is INTEGER
  281. *> = 0: successful exit
  282. *> < 0: if INFO = -i, the i-th argument had an illegal value
  283. *> > 0: if INFO = i, and i is
  284. *> <= N: the leading principal minor of order i of A
  285. *> is not positive, so the factorization could not
  286. *> be completed, and the solution has not been
  287. *> computed. RCOND = 0 is returned.
  288. *> = N+1: U is nonsingular, but RCOND is less than machine
  289. *> precision, meaning that the matrix is singular
  290. *> to working precision. Nevertheless, the
  291. *> solution and error bounds are computed because
  292. *> there are a number of situations where the
  293. *> computed solution can be more accurate than the
  294. *> value of RCOND would suggest.
  295. *> \endverbatim
  296. *
  297. * Authors:
  298. * ========
  299. *
  300. *> \author Univ. of Tennessee
  301. *> \author Univ. of California Berkeley
  302. *> \author Univ. of Colorado Denver
  303. *> \author NAG Ltd.
  304. *
  305. *> \ingroup doubleOTHERsolve
  306. *
  307. *> \par Further Details:
  308. * =====================
  309. *>
  310. *> \verbatim
  311. *>
  312. *> The band storage scheme is illustrated by the following example, when
  313. *> N = 6, KD = 2, and UPLO = 'U':
  314. *>
  315. *> Two-dimensional storage of the symmetric matrix A:
  316. *>
  317. *> a11 a12 a13
  318. *> a22 a23 a24
  319. *> a33 a34 a35
  320. *> a44 a45 a46
  321. *> a55 a56
  322. *> (aij=conjg(aji)) a66
  323. *>
  324. *> Band storage of the upper triangle of A:
  325. *>
  326. *> * * a13 a24 a35 a46
  327. *> * a12 a23 a34 a45 a56
  328. *> a11 a22 a33 a44 a55 a66
  329. *>
  330. *> Similarly, if UPLO = 'L' the format of A is as follows:
  331. *>
  332. *> a11 a22 a33 a44 a55 a66
  333. *> a21 a32 a43 a54 a65 *
  334. *> a31 a42 a53 a64 * *
  335. *>
  336. *> Array elements marked * are not used by the routine.
  337. *> \endverbatim
  338. *>
  339. * =====================================================================
  340. SUBROUTINE DPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
  341. $ EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
  342. $ WORK, IWORK, INFO )
  343. *
  344. * -- LAPACK driver routine --
  345. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  346. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  347. *
  348. * .. Scalar Arguments ..
  349. CHARACTER EQUED, FACT, UPLO
  350. INTEGER INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
  351. DOUBLE PRECISION RCOND
  352. * ..
  353. * .. Array Arguments ..
  354. INTEGER IWORK( * )
  355. DOUBLE PRECISION AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  356. $ BERR( * ), FERR( * ), S( * ), WORK( * ),
  357. $ X( LDX, * )
  358. * ..
  359. *
  360. * =====================================================================
  361. *
  362. * .. Parameters ..
  363. DOUBLE PRECISION ZERO, ONE
  364. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  365. * ..
  366. * .. Local Scalars ..
  367. LOGICAL EQUIL, NOFACT, RCEQU, UPPER
  368. INTEGER I, INFEQU, J, J1, J2
  369. DOUBLE PRECISION AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
  370. * ..
  371. * .. External Functions ..
  372. LOGICAL LSAME
  373. DOUBLE PRECISION DLAMCH, DLANSB
  374. EXTERNAL LSAME, DLAMCH, DLANSB
  375. * ..
  376. * .. External Subroutines ..
  377. EXTERNAL DCOPY, DLACPY, DLAQSB, DPBCON, DPBEQU, DPBRFS,
  378. $ DPBTRF, DPBTRS, XERBLA
  379. * ..
  380. * .. Intrinsic Functions ..
  381. INTRINSIC MAX, MIN
  382. * ..
  383. * .. Executable Statements ..
  384. *
  385. INFO = 0
  386. NOFACT = LSAME( FACT, 'N' )
  387. EQUIL = LSAME( FACT, 'E' )
  388. UPPER = LSAME( UPLO, 'U' )
  389. IF( NOFACT .OR. EQUIL ) THEN
  390. EQUED = 'N'
  391. RCEQU = .FALSE.
  392. ELSE
  393. RCEQU = LSAME( EQUED, 'Y' )
  394. SMLNUM = DLAMCH( 'Safe minimum' )
  395. BIGNUM = ONE / SMLNUM
  396. END IF
  397. *
  398. * Test the input parameters.
  399. *
  400. IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  401. $ THEN
  402. INFO = -1
  403. ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  404. INFO = -2
  405. ELSE IF( N.LT.0 ) THEN
  406. INFO = -3
  407. ELSE IF( KD.LT.0 ) THEN
  408. INFO = -4
  409. ELSE IF( NRHS.LT.0 ) THEN
  410. INFO = -5
  411. ELSE IF( LDAB.LT.KD+1 ) THEN
  412. INFO = -7
  413. ELSE IF( LDAFB.LT.KD+1 ) THEN
  414. INFO = -9
  415. ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  416. $ ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  417. INFO = -10
  418. ELSE
  419. IF( RCEQU ) THEN
  420. SMIN = BIGNUM
  421. SMAX = ZERO
  422. DO 10 J = 1, N
  423. SMIN = MIN( SMIN, S( J ) )
  424. SMAX = MAX( SMAX, S( J ) )
  425. 10 CONTINUE
  426. IF( SMIN.LE.ZERO ) THEN
  427. INFO = -11
  428. ELSE IF( N.GT.0 ) THEN
  429. SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  430. ELSE
  431. SCOND = ONE
  432. END IF
  433. END IF
  434. IF( INFO.EQ.0 ) THEN
  435. IF( LDB.LT.MAX( 1, N ) ) THEN
  436. INFO = -13
  437. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  438. INFO = -15
  439. END IF
  440. END IF
  441. END IF
  442. *
  443. IF( INFO.NE.0 ) THEN
  444. CALL XERBLA( 'DPBSVX', -INFO )
  445. RETURN
  446. END IF
  447. *
  448. IF( EQUIL ) THEN
  449. *
  450. * Compute row and column scalings to equilibrate the matrix A.
  451. *
  452. CALL DPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFEQU )
  453. IF( INFEQU.EQ.0 ) THEN
  454. *
  455. * Equilibrate the matrix.
  456. *
  457. CALL DLAQSB( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED )
  458. RCEQU = LSAME( EQUED, 'Y' )
  459. END IF
  460. END IF
  461. *
  462. * Scale the right-hand side.
  463. *
  464. IF( RCEQU ) THEN
  465. DO 30 J = 1, NRHS
  466. DO 20 I = 1, N
  467. B( I, J ) = S( I )*B( I, J )
  468. 20 CONTINUE
  469. 30 CONTINUE
  470. END IF
  471. *
  472. IF( NOFACT .OR. EQUIL ) THEN
  473. *
  474. * Compute the Cholesky factorization A = U**T *U or A = L*L**T.
  475. *
  476. IF( UPPER ) THEN
  477. DO 40 J = 1, N
  478. J1 = MAX( J-KD, 1 )
  479. CALL DCOPY( J-J1+1, AB( KD+1-J+J1, J ), 1,
  480. $ AFB( KD+1-J+J1, J ), 1 )
  481. 40 CONTINUE
  482. ELSE
  483. DO 50 J = 1, N
  484. J2 = MIN( J+KD, N )
  485. CALL DCOPY( J2-J+1, AB( 1, J ), 1, AFB( 1, J ), 1 )
  486. 50 CONTINUE
  487. END IF
  488. *
  489. CALL DPBTRF( UPLO, N, KD, AFB, LDAFB, INFO )
  490. *
  491. * Return if INFO is non-zero.
  492. *
  493. IF( INFO.GT.0 )THEN
  494. RCOND = ZERO
  495. RETURN
  496. END IF
  497. END IF
  498. *
  499. * Compute the norm of the matrix A.
  500. *
  501. ANORM = DLANSB( '1', UPLO, N, KD, AB, LDAB, WORK )
  502. *
  503. * Compute the reciprocal of the condition number of A.
  504. *
  505. CALL DPBCON( UPLO, N, KD, AFB, LDAFB, ANORM, RCOND, WORK, IWORK,
  506. $ INFO )
  507. *
  508. * Compute the solution matrix X.
  509. *
  510. CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  511. CALL DPBTRS( UPLO, N, KD, NRHS, AFB, LDAFB, X, LDX, INFO )
  512. *
  513. * Use iterative refinement to improve the computed solution and
  514. * compute error bounds and backward error estimates for it.
  515. *
  516. CALL DPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X,
  517. $ LDX, FERR, BERR, WORK, IWORK, INFO )
  518. *
  519. * Transform the solution matrix X to a solution of the original
  520. * system.
  521. *
  522. IF( RCEQU ) THEN
  523. DO 70 J = 1, NRHS
  524. DO 60 I = 1, N
  525. X( I, J ) = S( I )*X( I, J )
  526. 60 CONTINUE
  527. 70 CONTINUE
  528. DO 80 J = 1, NRHS
  529. FERR( J ) = FERR( J ) / SCOND
  530. 80 CONTINUE
  531. END IF
  532. *
  533. * Set INFO = N+1 if the matrix is singular to working precision.
  534. *
  535. IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  536. $ INFO = N + 1
  537. *
  538. RETURN
  539. *
  540. * End of DPBSVX
  541. *
  542. END