|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- REAL FUNCTION SNRM2F ( N, X, INCX )
- * .. Scalar Arguments ..
- INTEGER INCX, N
- * .. Array Arguments ..
- REAL X( * )
- * ..
- *
- * SNRM2 returns the euclidean norm of a vector via the function
- * name, so that
- *
- * SNRM2 := sqrt( x'*x )
- *
- *
- *
- * -- This version written on 25-October-1982.
- * Modified on 14-October-1993 to inline the call to SLASSQ.
- * Sven Hammarling, Nag Ltd.
- *
- *
- * .. Parameters ..
- REAL ONE , ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * .. Local Scalars ..
- INTEGER IX
- REAL ABSXI, NORM, SCALE, SSQ
- * .. Intrinsic Functions ..
- INTRINSIC ABS, SQRT
- * ..
- * .. Executable Statements ..
- IF( N.LT.1 .OR. INCX.LT.1 )THEN
- NORM = ZERO
- ELSE IF( N.EQ.1 )THEN
- NORM = ABS( X( 1 ) )
- ELSE
- SCALE = ZERO
- SSQ = ONE
- * The following loop is equivalent to this call to the LAPACK
- * auxiliary routine:
- * CALL SLASSQ( N, X, INCX, SCALE, SSQ )
- *
- DO 10, IX = 1, 1 + ( N - 1 )*INCX, INCX
- IF( X( IX ).NE.ZERO )THEN
- ABSXI = ABS( X( IX ) )
- IF( SCALE.LT.ABSXI )THEN
- SSQ = ONE + SSQ*( SCALE/ABSXI )**2
- SCALE = ABSXI
- ELSE
- SSQ = SSQ + ( ABSXI/SCALE )**2
- END IF
- END IF
- 10 CONTINUE
- NORM = SCALE * SQRT( SSQ )
- END IF
- *
- SNRM2F = NORM
- RETURN
- *
- * End of SNRM2.
- *
- END
|