You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cchkst.f 69 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998
  1. *> \brief \b CCHKST
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CCHKST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  12. * NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
  13. * WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
  14. * LWORK, RWORK, LRWORK, IWORK, LIWORK, RESULT,
  15. * INFO )
  16. *
  17. * .. Scalar Arguments ..
  18. * INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
  19. * $ NSIZES, NTYPES
  20. * REAL THRESH
  21. * ..
  22. * .. Array Arguments ..
  23. * LOGICAL DOTYPE( * )
  24. * INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  25. * REAL D1( * ), D2( * ), D3( * ), D4( * ), D5( * ),
  26. * $ RESULT( * ), RWORK( * ), SD( * ), SE( * ),
  27. * $ WA1( * ), WA2( * ), WA3( * ), WR( * )
  28. * COMPLEX A( LDA, * ), AP( * ), TAU( * ), U( LDU, * ),
  29. * $ V( LDU, * ), VP( * ), WORK( * ), Z( LDU, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CCHKST checks the Hermitian eigenvalue problem routines.
  39. *>
  40. *> CHETRD factors A as U S U* , where * means conjugate transpose,
  41. *> S is real symmetric tridiagonal, and U is unitary.
  42. *> CHETRD can use either just the lower or just the upper triangle
  43. *> of A; CCHKST checks both cases.
  44. *> U is represented as a product of Householder
  45. *> transformations, whose vectors are stored in the first
  46. *> n-1 columns of V, and whose scale factors are in TAU.
  47. *>
  48. *> CHPTRD does the same as CHETRD, except that A and V are stored
  49. *> in "packed" format.
  50. *>
  51. *> CUNGTR constructs the matrix U from the contents of V and TAU.
  52. *>
  53. *> CUPGTR constructs the matrix U from the contents of VP and TAU.
  54. *>
  55. *> CSTEQR factors S as Z D1 Z* , where Z is the unitary
  56. *> matrix of eigenvectors and D1 is a diagonal matrix with
  57. *> the eigenvalues on the diagonal. D2 is the matrix of
  58. *> eigenvalues computed when Z is not computed.
  59. *>
  60. *> SSTERF computes D3, the matrix of eigenvalues, by the
  61. *> PWK method, which does not yield eigenvectors.
  62. *>
  63. *> CPTEQR factors S as Z4 D4 Z4* , for a
  64. *> Hermitian positive definite tridiagonal matrix.
  65. *> D5 is the matrix of eigenvalues computed when Z is not
  66. *> computed.
  67. *>
  68. *> SSTEBZ computes selected eigenvalues. WA1, WA2, and
  69. *> WA3 will denote eigenvalues computed to high
  70. *> absolute accuracy, with different range options.
  71. *> WR will denote eigenvalues computed to high relative
  72. *> accuracy.
  73. *>
  74. *> CSTEIN computes Y, the eigenvectors of S, given the
  75. *> eigenvalues.
  76. *>
  77. *> CSTEDC factors S as Z D1 Z* , where Z is the unitary
  78. *> matrix of eigenvectors and D1 is a diagonal matrix with
  79. *> the eigenvalues on the diagonal ('I' option). It may also
  80. *> update an input unitary matrix, usually the output
  81. *> from CHETRD/CUNGTR or CHPTRD/CUPGTR ('V' option). It may
  82. *> also just compute eigenvalues ('N' option).
  83. *>
  84. *> CSTEMR factors S as Z D1 Z* , where Z is the unitary
  85. *> matrix of eigenvectors and D1 is a diagonal matrix with
  86. *> the eigenvalues on the diagonal ('I' option). CSTEMR
  87. *> uses the Relatively Robust Representation whenever possible.
  88. *>
  89. *> When CCHKST is called, a number of matrix "sizes" ("n's") and a
  90. *> number of matrix "types" are specified. For each size ("n")
  91. *> and each type of matrix, one matrix will be generated and used
  92. *> to test the Hermitian eigenroutines. For each matrix, a number
  93. *> of tests will be performed:
  94. *>
  95. *> (1) | A - V S V* | / ( |A| n ulp ) CHETRD( UPLO='U', ... )
  96. *>
  97. *> (2) | I - UV* | / ( n ulp ) CUNGTR( UPLO='U', ... )
  98. *>
  99. *> (3) | A - V S V* | / ( |A| n ulp ) CHETRD( UPLO='L', ... )
  100. *>
  101. *> (4) | I - UV* | / ( n ulp ) CUNGTR( UPLO='L', ... )
  102. *>
  103. *> (5-8) Same as 1-4, but for CHPTRD and CUPGTR.
  104. *>
  105. *> (9) | S - Z D Z* | / ( |S| n ulp ) CSTEQR('V',...)
  106. *>
  107. *> (10) | I - ZZ* | / ( n ulp ) CSTEQR('V',...)
  108. *>
  109. *> (11) | D1 - D2 | / ( |D1| ulp ) CSTEQR('N',...)
  110. *>
  111. *> (12) | D1 - D3 | / ( |D1| ulp ) SSTERF
  112. *>
  113. *> (13) 0 if the true eigenvalues (computed by sturm count)
  114. *> of S are within THRESH of
  115. *> those in D1. 2*THRESH if they are not. (Tested using
  116. *> SSTECH)
  117. *>
  118. *> For S positive definite,
  119. *>
  120. *> (14) | S - Z4 D4 Z4* | / ( |S| n ulp ) CPTEQR('V',...)
  121. *>
  122. *> (15) | I - Z4 Z4* | / ( n ulp ) CPTEQR('V',...)
  123. *>
  124. *> (16) | D4 - D5 | / ( 100 |D4| ulp ) CPTEQR('N',...)
  125. *>
  126. *> When S is also diagonally dominant by the factor gamma < 1,
  127. *>
  128. *> (17) max | D4(i) - WR(i) | / ( |D4(i)| omega ) ,
  129. *> i
  130. *> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
  131. *> SSTEBZ( 'A', 'E', ...)
  132. *>
  133. *> (18) | WA1 - D3 | / ( |D3| ulp ) SSTEBZ( 'A', 'E', ...)
  134. *>
  135. *> (19) ( max { min | WA2(i)-WA3(j) | } +
  136. *> i j
  137. *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
  138. *> i j
  139. *> SSTEBZ( 'I', 'E', ...)
  140. *>
  141. *> (20) | S - Y WA1 Y* | / ( |S| n ulp ) SSTEBZ, CSTEIN
  142. *>
  143. *> (21) | I - Y Y* | / ( n ulp ) SSTEBZ, CSTEIN
  144. *>
  145. *> (22) | S - Z D Z* | / ( |S| n ulp ) CSTEDC('I')
  146. *>
  147. *> (23) | I - ZZ* | / ( n ulp ) CSTEDC('I')
  148. *>
  149. *> (24) | S - Z D Z* | / ( |S| n ulp ) CSTEDC('V')
  150. *>
  151. *> (25) | I - ZZ* | / ( n ulp ) CSTEDC('V')
  152. *>
  153. *> (26) | D1 - D2 | / ( |D1| ulp ) CSTEDC('V') and
  154. *> CSTEDC('N')
  155. *>
  156. *> Test 27 is disabled at the moment because CSTEMR does not
  157. *> guarantee high relatvie accuracy.
  158. *>
  159. *> (27) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
  160. *> i
  161. *> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
  162. *> CSTEMR('V', 'A')
  163. *>
  164. *> (28) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
  165. *> i
  166. *> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
  167. *> CSTEMR('V', 'I')
  168. *>
  169. *> Tests 29 through 34 are disable at present because CSTEMR
  170. *> does not handle partial spectrum requests.
  171. *>
  172. *> (29) | S - Z D Z* | / ( |S| n ulp ) CSTEMR('V', 'I')
  173. *>
  174. *> (30) | I - ZZ* | / ( n ulp ) CSTEMR('V', 'I')
  175. *>
  176. *> (31) ( max { min | WA2(i)-WA3(j) | } +
  177. *> i j
  178. *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
  179. *> i j
  180. *> CSTEMR('N', 'I') vs. CSTEMR('V', 'I')
  181. *>
  182. *> (32) | S - Z D Z* | / ( |S| n ulp ) CSTEMR('V', 'V')
  183. *>
  184. *> (33) | I - ZZ* | / ( n ulp ) CSTEMR('V', 'V')
  185. *>
  186. *> (34) ( max { min | WA2(i)-WA3(j) | } +
  187. *> i j
  188. *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
  189. *> i j
  190. *> CSTEMR('N', 'V') vs. CSTEMR('V', 'V')
  191. *>
  192. *> (35) | S - Z D Z* | / ( |S| n ulp ) CSTEMR('V', 'A')
  193. *>
  194. *> (36) | I - ZZ* | / ( n ulp ) CSTEMR('V', 'A')
  195. *>
  196. *> (37) ( max { min | WA2(i)-WA3(j) | } +
  197. *> i j
  198. *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
  199. *> i j
  200. *> CSTEMR('N', 'A') vs. CSTEMR('V', 'A')
  201. *>
  202. *> The "sizes" are specified by an array NN(1:NSIZES); the value of
  203. *> each element NN(j) specifies one size.
  204. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
  205. *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
  206. *> Currently, the list of possible types is:
  207. *>
  208. *> (1) The zero matrix.
  209. *> (2) The identity matrix.
  210. *>
  211. *> (3) A diagonal matrix with evenly spaced entries
  212. *> 1, ..., ULP and random signs.
  213. *> (ULP = (first number larger than 1) - 1 )
  214. *> (4) A diagonal matrix with geometrically spaced entries
  215. *> 1, ..., ULP and random signs.
  216. *> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
  217. *> and random signs.
  218. *>
  219. *> (6) Same as (4), but multiplied by SQRT( overflow threshold )
  220. *> (7) Same as (4), but multiplied by SQRT( underflow threshold )
  221. *>
  222. *> (8) A matrix of the form U* D U, where U is unitary and
  223. *> D has evenly spaced entries 1, ..., ULP with random signs
  224. *> on the diagonal.
  225. *>
  226. *> (9) A matrix of the form U* D U, where U is unitary and
  227. *> D has geometrically spaced entries 1, ..., ULP with random
  228. *> signs on the diagonal.
  229. *>
  230. *> (10) A matrix of the form U* D U, where U is unitary and
  231. *> D has "clustered" entries 1, ULP,..., ULP with random
  232. *> signs on the diagonal.
  233. *>
  234. *> (11) Same as (8), but multiplied by SQRT( overflow threshold )
  235. *> (12) Same as (8), but multiplied by SQRT( underflow threshold )
  236. *>
  237. *> (13) Hermitian matrix with random entries chosen from (-1,1).
  238. *> (14) Same as (13), but multiplied by SQRT( overflow threshold )
  239. *> (15) Same as (13), but multiplied by SQRT( underflow threshold )
  240. *> (16) Same as (8), but diagonal elements are all positive.
  241. *> (17) Same as (9), but diagonal elements are all positive.
  242. *> (18) Same as (10), but diagonal elements are all positive.
  243. *> (19) Same as (16), but multiplied by SQRT( overflow threshold )
  244. *> (20) Same as (16), but multiplied by SQRT( underflow threshold )
  245. *> (21) A diagonally dominant tridiagonal matrix with geometrically
  246. *> spaced diagonal entries 1, ..., ULP.
  247. *> \endverbatim
  248. *
  249. * Arguments:
  250. * ==========
  251. *
  252. *> \param[in] NSIZES
  253. *> \verbatim
  254. *> NSIZES is INTEGER
  255. *> The number of sizes of matrices to use. If it is zero,
  256. *> CCHKST does nothing. It must be at least zero.
  257. *> \endverbatim
  258. *>
  259. *> \param[in] NN
  260. *> \verbatim
  261. *> NN is INTEGER array, dimension (NSIZES)
  262. *> An array containing the sizes to be used for the matrices.
  263. *> Zero values will be skipped. The values must be at least
  264. *> zero.
  265. *> \endverbatim
  266. *>
  267. *> \param[in] NTYPES
  268. *> \verbatim
  269. *> NTYPES is INTEGER
  270. *> The number of elements in DOTYPE. If it is zero, CCHKST
  271. *> does nothing. It must be at least zero. If it is MAXTYP+1
  272. *> and NSIZES is 1, then an additional type, MAXTYP+1 is
  273. *> defined, which is to use whatever matrix is in A. This
  274. *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
  275. *> DOTYPE(MAXTYP+1) is .TRUE. .
  276. *> \endverbatim
  277. *>
  278. *> \param[in] DOTYPE
  279. *> \verbatim
  280. *> DOTYPE is LOGICAL array, dimension (NTYPES)
  281. *> If DOTYPE(j) is .TRUE., then for each size in NN a
  282. *> matrix of that size and of type j will be generated.
  283. *> If NTYPES is smaller than the maximum number of types
  284. *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
  285. *> MAXTYP will not be generated. If NTYPES is larger
  286. *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
  287. *> will be ignored.
  288. *> \endverbatim
  289. *>
  290. *> \param[in,out] ISEED
  291. *> \verbatim
  292. *> ISEED is INTEGER array, dimension (4)
  293. *> On entry ISEED specifies the seed of the random number
  294. *> generator. The array elements should be between 0 and 4095;
  295. *> if not they will be reduced mod 4096. Also, ISEED(4) must
  296. *> be odd. The random number generator uses a linear
  297. *> congruential sequence limited to small integers, and so
  298. *> should produce machine independent random numbers. The
  299. *> values of ISEED are changed on exit, and can be used in the
  300. *> next call to CCHKST to continue the same random number
  301. *> sequence.
  302. *> \endverbatim
  303. *>
  304. *> \param[in] THRESH
  305. *> \verbatim
  306. *> THRESH is REAL
  307. *> A test will count as "failed" if the "error", computed as
  308. *> described above, exceeds THRESH. Note that the error
  309. *> is scaled to be O(1), so THRESH should be a reasonably
  310. *> small multiple of 1, e.g., 10 or 100. In particular,
  311. *> it should not depend on the precision (single vs. double)
  312. *> or the size of the matrix. It must be at least zero.
  313. *> \endverbatim
  314. *>
  315. *> \param[in] NOUNIT
  316. *> \verbatim
  317. *> NOUNIT is INTEGER
  318. *> The FORTRAN unit number for printing out error messages
  319. *> (e.g., if a routine returns IINFO not equal to 0.)
  320. *> \endverbatim
  321. *>
  322. *> \param[in,out] A
  323. *> \verbatim
  324. *> A is COMPLEX array of
  325. *> dimension ( LDA , max(NN) )
  326. *> Used to hold the matrix whose eigenvalues are to be
  327. *> computed. On exit, A contains the last matrix actually
  328. *> used.
  329. *> \endverbatim
  330. *>
  331. *> \param[in] LDA
  332. *> \verbatim
  333. *> LDA is INTEGER
  334. *> The leading dimension of A. It must be at
  335. *> least 1 and at least max( NN ).
  336. *> \endverbatim
  337. *>
  338. *> \param[out] AP
  339. *> \verbatim
  340. *> AP is COMPLEX array of
  341. *> dimension( max(NN)*max(NN+1)/2 )
  342. *> The matrix A stored in packed format.
  343. *> \endverbatim
  344. *>
  345. *> \param[out] SD
  346. *> \verbatim
  347. *> SD is REAL array of
  348. *> dimension( max(NN) )
  349. *> The diagonal of the tridiagonal matrix computed by CHETRD.
  350. *> On exit, SD and SE contain the tridiagonal form of the
  351. *> matrix in A.
  352. *> \endverbatim
  353. *>
  354. *> \param[out] SE
  355. *> \verbatim
  356. *> SE is REAL array of
  357. *> dimension( max(NN) )
  358. *> The off-diagonal of the tridiagonal matrix computed by
  359. *> CHETRD. On exit, SD and SE contain the tridiagonal form of
  360. *> the matrix in A.
  361. *> \endverbatim
  362. *>
  363. *> \param[out] D1
  364. *> \verbatim
  365. *> D1 is REAL array of
  366. *> dimension( max(NN) )
  367. *> The eigenvalues of A, as computed by CSTEQR simultaneously
  368. *> with Z. On exit, the eigenvalues in D1 correspond with the
  369. *> matrix in A.
  370. *> \endverbatim
  371. *>
  372. *> \param[out] D2
  373. *> \verbatim
  374. *> D2 is REAL array of
  375. *> dimension( max(NN) )
  376. *> The eigenvalues of A, as computed by CSTEQR if Z is not
  377. *> computed. On exit, the eigenvalues in D2 correspond with
  378. *> the matrix in A.
  379. *> \endverbatim
  380. *>
  381. *> \param[out] D3
  382. *> \verbatim
  383. *> D3 is REAL array of
  384. *> dimension( max(NN) )
  385. *> The eigenvalues of A, as computed by SSTERF. On exit, the
  386. *> eigenvalues in D3 correspond with the matrix in A.
  387. *> \endverbatim
  388. *>
  389. *> \param[out] D4
  390. *> \verbatim
  391. *> D4 is REAL array of
  392. *> dimension( max(NN) )
  393. *> The eigenvalues of A, as computed by CPTEQR(V).
  394. *> ZPTEQR factors S as Z4 D4 Z4*
  395. *> On exit, the eigenvalues in D4 correspond with the matrix in A.
  396. *> \endverbatim
  397. *>
  398. *> \param[out] D5
  399. *> \verbatim
  400. *> D5 is REAL array of
  401. *> dimension( max(NN) )
  402. *> The eigenvalues of A, as computed by ZPTEQR(N)
  403. *> when Z is not computed. On exit, the
  404. *> eigenvalues in D4 correspond with the matrix in A.
  405. *> \endverbatim
  406. *>
  407. *> \param[out] WA1
  408. *> \verbatim
  409. *> WA1 is REAL array of
  410. *> dimension( max(NN) )
  411. *> All eigenvalues of A, computed to high
  412. *> absolute accuracy, with different range options.
  413. *> as computed by SSTEBZ.
  414. *> \endverbatim
  415. *>
  416. *> \param[out] WA2
  417. *> \verbatim
  418. *> WA2 is REAL array of
  419. *> dimension( max(NN) )
  420. *> Selected eigenvalues of A, computed to high
  421. *> absolute accuracy, with different range options.
  422. *> as computed by SSTEBZ.
  423. *> Choose random values for IL and IU, and ask for the
  424. *> IL-th through IU-th eigenvalues.
  425. *> \endverbatim
  426. *>
  427. *> \param[out] WA3
  428. *> \verbatim
  429. *> WA3 is REAL array of
  430. *> dimension( max(NN) )
  431. *> Selected eigenvalues of A, computed to high
  432. *> absolute accuracy, with different range options.
  433. *> as computed by SSTEBZ.
  434. *> Determine the values VL and VU of the IL-th and IU-th
  435. *> eigenvalues and ask for all eigenvalues in this range.
  436. *> \endverbatim
  437. *>
  438. *> \param[out] WR
  439. *> \verbatim
  440. *> WR is DOUBLE PRECISION array of
  441. *> dimension( max(NN) )
  442. *> All eigenvalues of A, computed to high
  443. *> absolute accuracy, with different options.
  444. *> as computed by DSTEBZ.
  445. *> \endverbatim
  446. *>
  447. *> \param[out] U
  448. *> \verbatim
  449. *> U is COMPLEX array of
  450. *> dimension( LDU, max(NN) ).
  451. *> The unitary matrix computed by CHETRD + CUNGTR.
  452. *> \endverbatim
  453. *>
  454. *> \param[in] LDU
  455. *> \verbatim
  456. *> LDU is INTEGER
  457. *> The leading dimension of U, Z, and V. It must be at least 1
  458. *> and at least max( NN ).
  459. *> \endverbatim
  460. *>
  461. *> \param[out] V
  462. *> \verbatim
  463. *> V is COMPLEX array of
  464. *> dimension( LDU, max(NN) ).
  465. *> The Housholder vectors computed by CHETRD in reducing A to
  466. *> tridiagonal form. The vectors computed with UPLO='U' are
  467. *> in the upper triangle, and the vectors computed with UPLO='L'
  468. *> are in the lower triangle. (As described in CHETRD, the
  469. *> sub- and superdiagonal are not set to 1, although the
  470. *> true Householder vector has a 1 in that position. The
  471. *> routines that use V, such as CUNGTR, set those entries to
  472. *> 1 before using them, and then restore them later.)
  473. *> \endverbatim
  474. *>
  475. *> \param[out] VP
  476. *> \verbatim
  477. *> VP is COMPLEX array of
  478. *> dimension( max(NN)*max(NN+1)/2 )
  479. *> The matrix V stored in packed format.
  480. *> \endverbatim
  481. *>
  482. *> \param[out] TAU
  483. *> \verbatim
  484. *> TAU is COMPLEX array of
  485. *> dimension( max(NN) )
  486. *> The Householder factors computed by CHETRD in reducing A
  487. *> to tridiagonal form.
  488. *> \endverbatim
  489. *>
  490. *> \param[out] Z
  491. *> \verbatim
  492. *> Z is COMPLEX array of
  493. *> dimension( LDU, max(NN) ).
  494. *> The unitary matrix of eigenvectors computed by CSTEQR,
  495. *> CPTEQR, and CSTEIN.
  496. *> \endverbatim
  497. *>
  498. *> \param[out] WORK
  499. *> \verbatim
  500. *> WORK is COMPLEX array of
  501. *> dimension( LWORK )
  502. *> \endverbatim
  503. *>
  504. *> \param[in] LWORK
  505. *> \verbatim
  506. *> LWORK is INTEGER
  507. *> The number of entries in WORK. This must be at least
  508. *> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 3 * Nmax**2
  509. *> where Nmax = max( NN(j), 2 ) and lg = log base 2.
  510. *> \endverbatim
  511. *>
  512. *> \param[out] IWORK
  513. *> \verbatim
  514. *> IWORK is INTEGER array,
  515. *> Workspace.
  516. *> \endverbatim
  517. *>
  518. *> \param[out] LIWORK
  519. *> \verbatim
  520. *> LIWORK is INTEGER
  521. *> The number of entries in IWORK. This must be at least
  522. *> 6 + 6*Nmax + 5 * Nmax * lg Nmax
  523. *> where Nmax = max( NN(j), 2 ) and lg = log base 2.
  524. *> \endverbatim
  525. *>
  526. *> \param[out] RWORK
  527. *> \verbatim
  528. *> RWORK is REAL array
  529. *> \endverbatim
  530. *>
  531. *> \param[in] LRWORK
  532. *> \verbatim
  533. *> LRWORK is INTEGER
  534. *> The number of entries in LRWORK (dimension( ??? )
  535. *> \endverbatim
  536. *>
  537. *> \param[out] RESULT
  538. *> \verbatim
  539. *> RESULT is REAL array, dimension (26)
  540. *> The values computed by the tests described above.
  541. *> The values are currently limited to 1/ulp, to avoid
  542. *> overflow.
  543. *> \endverbatim
  544. *>
  545. *> \param[out] INFO
  546. *> \verbatim
  547. *> INFO is INTEGER
  548. *> If 0, then everything ran OK.
  549. *> -1: NSIZES < 0
  550. *> -2: Some NN(j) < 0
  551. *> -3: NTYPES < 0
  552. *> -5: THRESH < 0
  553. *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
  554. *> -23: LDU < 1 or LDU < NMAX.
  555. *> -29: LWORK too small.
  556. *> If CLATMR, CLATMS, CHETRD, CUNGTR, CSTEQR, SSTERF,
  557. *> or CUNMC2 returns an error code, the
  558. *> absolute value of it is returned.
  559. *>
  560. *>-----------------------------------------------------------------------
  561. *>
  562. *> Some Local Variables and Parameters:
  563. *> ---- ----- --------- --- ----------
  564. *> ZERO, ONE Real 0 and 1.
  565. *> MAXTYP The number of types defined.
  566. *> NTEST The number of tests performed, or which can
  567. *> be performed so far, for the current matrix.
  568. *> NTESTT The total number of tests performed so far.
  569. *> NBLOCK Blocksize as returned by ENVIR.
  570. *> NMAX Largest value in NN.
  571. *> NMATS The number of matrices generated so far.
  572. *> NERRS The number of tests which have exceeded THRESH
  573. *> so far.
  574. *> COND, IMODE Values to be passed to the matrix generators.
  575. *> ANORM Norm of A; passed to matrix generators.
  576. *>
  577. *> OVFL, UNFL Overflow and underflow thresholds.
  578. *> ULP, ULPINV Finest relative precision and its inverse.
  579. *> RTOVFL, RTUNFL Square roots of the previous 2 values.
  580. *> The following four arrays decode JTYPE:
  581. *> KTYPE(j) The general type (1-10) for type "j".
  582. *> KMODE(j) The MODE value to be passed to the matrix
  583. *> generator for type "j".
  584. *> KMAGN(j) The order of magnitude ( O(1),
  585. *> O(overflow^(1/2) ), O(underflow^(1/2) )
  586. *> \endverbatim
  587. *
  588. * Authors:
  589. * ========
  590. *
  591. *> \author Univ. of Tennessee
  592. *> \author Univ. of California Berkeley
  593. *> \author Univ. of Colorado Denver
  594. *> \author NAG Ltd.
  595. *
  596. *> \ingroup complex_eig
  597. *
  598. * =====================================================================
  599. SUBROUTINE CCHKST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  600. $ NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
  601. $ WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
  602. $ LWORK, RWORK, LRWORK, IWORK, LIWORK, RESULT,
  603. $ INFO )
  604. *
  605. * -- LAPACK test routine --
  606. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  607. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  608. *
  609. * .. Scalar Arguments ..
  610. INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
  611. $ NSIZES, NTYPES
  612. REAL THRESH
  613. * ..
  614. * .. Array Arguments ..
  615. LOGICAL DOTYPE( * )
  616. INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  617. REAL D1( * ), D2( * ), D3( * ), D4( * ), D5( * ),
  618. $ RESULT( * ), RWORK( * ), SD( * ), SE( * ),
  619. $ WA1( * ), WA2( * ), WA3( * ), WR( * )
  620. COMPLEX A( LDA, * ), AP( * ), TAU( * ), U( LDU, * ),
  621. $ V( LDU, * ), VP( * ), WORK( * ), Z( LDU, * )
  622. * ..
  623. *
  624. * =====================================================================
  625. *
  626. * .. Parameters ..
  627. REAL ZERO, ONE, TWO, EIGHT, TEN, HUN
  628. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
  629. $ EIGHT = 8.0E0, TEN = 10.0E0, HUN = 100.0E0 )
  630. COMPLEX CZERO, CONE
  631. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
  632. $ CONE = ( 1.0E+0, 0.0E+0 ) )
  633. REAL HALF
  634. PARAMETER ( HALF = ONE / TWO )
  635. INTEGER MAXTYP
  636. PARAMETER ( MAXTYP = 21 )
  637. LOGICAL CRANGE
  638. PARAMETER ( CRANGE = .FALSE. )
  639. LOGICAL CREL
  640. PARAMETER ( CREL = .FALSE. )
  641. * ..
  642. * .. Local Scalars ..
  643. LOGICAL BADNN, TRYRAC
  644. INTEGER I, IINFO, IL, IMODE, INDE, INDRWK, ITEMP,
  645. $ ITYPE, IU, J, JC, JR, JSIZE, JTYPE, LGN,
  646. $ LIWEDC, LOG2UI, LRWEDC, LWEDC, M, M2, M3,
  647. $ MTYPES, N, NAP, NBLOCK, NERRS, NMATS, NMAX,
  648. $ NSPLIT, NTEST, NTESTT
  649. REAL ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
  650. $ RTUNFL, TEMP1, TEMP2, TEMP3, TEMP4, ULP,
  651. $ ULPINV, UNFL, VL, VU
  652. * ..
  653. * .. Local Arrays ..
  654. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
  655. $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
  656. $ KTYPE( MAXTYP )
  657. REAL DUMMA( 1 )
  658. * ..
  659. * .. External Functions ..
  660. INTEGER ILAENV
  661. REAL SLAMCH, SLARND, SSXT1
  662. EXTERNAL ILAENV, SLAMCH, SLARND, SSXT1
  663. * ..
  664. * .. External Subroutines ..
  665. EXTERNAL CCOPY, CHET21, CHETRD, CHPT21, CHPTRD, CLACPY,
  666. $ CLASET, CLATMR, CLATMS, CPTEQR, CSTEDC, CSTEMR,
  667. $ CSTEIN, CSTEQR, CSTT21, CSTT22, CUNGTR, CUPGTR,
  668. $ SCOPY, SLASUM, SSTEBZ, SSTECH, SSTERF, XERBLA
  669. * ..
  670. * .. Intrinsic Functions ..
  671. INTRINSIC ABS, CONJG, INT, LOG, MAX, MIN, REAL, SQRT
  672. * ..
  673. * .. Data statements ..
  674. DATA KTYPE / 1, 2, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 8,
  675. $ 8, 8, 9, 9, 9, 9, 9, 10 /
  676. DATA KMAGN / 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
  677. $ 2, 3, 1, 1, 1, 2, 3, 1 /
  678. DATA KMODE / 0, 0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
  679. $ 0, 0, 4, 3, 1, 4, 4, 3 /
  680. * ..
  681. * .. Executable Statements ..
  682. *
  683. * Keep ftnchek happy
  684. IDUMMA( 1 ) = 1
  685. *
  686. * Check for errors
  687. *
  688. NTESTT = 0
  689. INFO = 0
  690. *
  691. * Important constants
  692. *
  693. BADNN = .FALSE.
  694. TRYRAC = .TRUE.
  695. NMAX = 1
  696. DO 10 J = 1, NSIZES
  697. NMAX = MAX( NMAX, NN( J ) )
  698. IF( NN( J ).LT.0 )
  699. $ BADNN = .TRUE.
  700. 10 CONTINUE
  701. *
  702. NBLOCK = ILAENV( 1, 'CHETRD', 'L', NMAX, -1, -1, -1 )
  703. NBLOCK = MIN( NMAX, MAX( 1, NBLOCK ) )
  704. *
  705. * Check for errors
  706. *
  707. IF( NSIZES.LT.0 ) THEN
  708. INFO = -1
  709. ELSE IF( BADNN ) THEN
  710. INFO = -2
  711. ELSE IF( NTYPES.LT.0 ) THEN
  712. INFO = -3
  713. ELSE IF( LDA.LT.NMAX ) THEN
  714. INFO = -9
  715. ELSE IF( LDU.LT.NMAX ) THEN
  716. INFO = -23
  717. ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
  718. INFO = -29
  719. END IF
  720. *
  721. IF( INFO.NE.0 ) THEN
  722. CALL XERBLA( 'CCHKST', -INFO )
  723. RETURN
  724. END IF
  725. *
  726. * Quick return if possible
  727. *
  728. IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
  729. $ RETURN
  730. *
  731. * More Important constants
  732. *
  733. UNFL = SLAMCH( 'Safe minimum' )
  734. OVFL = ONE / UNFL
  735. ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
  736. ULPINV = ONE / ULP
  737. LOG2UI = INT( LOG( ULPINV ) / LOG( TWO ) )
  738. RTUNFL = SQRT( UNFL )
  739. RTOVFL = SQRT( OVFL )
  740. *
  741. * Loop over sizes, types
  742. *
  743. DO 20 I = 1, 4
  744. ISEED2( I ) = ISEED( I )
  745. 20 CONTINUE
  746. NERRS = 0
  747. NMATS = 0
  748. *
  749. DO 310 JSIZE = 1, NSIZES
  750. N = NN( JSIZE )
  751. IF( N.GT.0 ) THEN
  752. LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
  753. IF( 2**LGN.LT.N )
  754. $ LGN = LGN + 1
  755. IF( 2**LGN.LT.N )
  756. $ LGN = LGN + 1
  757. LWEDC = 1 + 4*N + 2*N*LGN + 4*N**2
  758. LRWEDC = 1 + 3*N + 2*N*LGN + 4*N**2
  759. LIWEDC = 6 + 6*N + 5*N*LGN
  760. ELSE
  761. LWEDC = 8
  762. LRWEDC = 7
  763. LIWEDC = 12
  764. END IF
  765. NAP = ( N*( N+1 ) ) / 2
  766. ANINV = ONE / REAL( MAX( 1, N ) )
  767. *
  768. IF( NSIZES.NE.1 ) THEN
  769. MTYPES = MIN( MAXTYP, NTYPES )
  770. ELSE
  771. MTYPES = MIN( MAXTYP+1, NTYPES )
  772. END IF
  773. *
  774. DO 300 JTYPE = 1, MTYPES
  775. IF( .NOT.DOTYPE( JTYPE ) )
  776. $ GO TO 300
  777. NMATS = NMATS + 1
  778. NTEST = 0
  779. *
  780. DO 30 J = 1, 4
  781. IOLDSD( J ) = ISEED( J )
  782. 30 CONTINUE
  783. *
  784. * Compute "A"
  785. *
  786. * Control parameters:
  787. *
  788. * KMAGN KMODE KTYPE
  789. * =1 O(1) clustered 1 zero
  790. * =2 large clustered 2 identity
  791. * =3 small exponential (none)
  792. * =4 arithmetic diagonal, (w/ eigenvalues)
  793. * =5 random log Hermitian, w/ eigenvalues
  794. * =6 random (none)
  795. * =7 random diagonal
  796. * =8 random Hermitian
  797. * =9 positive definite
  798. * =10 diagonally dominant tridiagonal
  799. *
  800. IF( MTYPES.GT.MAXTYP )
  801. $ GO TO 100
  802. *
  803. ITYPE = KTYPE( JTYPE )
  804. IMODE = KMODE( JTYPE )
  805. *
  806. * Compute norm
  807. *
  808. GO TO ( 40, 50, 60 )KMAGN( JTYPE )
  809. *
  810. 40 CONTINUE
  811. ANORM = ONE
  812. GO TO 70
  813. *
  814. 50 CONTINUE
  815. ANORM = ( RTOVFL*ULP )*ANINV
  816. GO TO 70
  817. *
  818. 60 CONTINUE
  819. ANORM = RTUNFL*N*ULPINV
  820. GO TO 70
  821. *
  822. 70 CONTINUE
  823. *
  824. CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
  825. IINFO = 0
  826. IF( JTYPE.LE.15 ) THEN
  827. COND = ULPINV
  828. ELSE
  829. COND = ULPINV*ANINV / TEN
  830. END IF
  831. *
  832. * Special Matrices -- Identity & Jordan block
  833. *
  834. * Zero
  835. *
  836. IF( ITYPE.EQ.1 ) THEN
  837. IINFO = 0
  838. *
  839. ELSE IF( ITYPE.EQ.2 ) THEN
  840. *
  841. * Identity
  842. *
  843. DO 80 JC = 1, N
  844. A( JC, JC ) = ANORM
  845. 80 CONTINUE
  846. *
  847. ELSE IF( ITYPE.EQ.4 ) THEN
  848. *
  849. * Diagonal Matrix, [Eigen]values Specified
  850. *
  851. CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
  852. $ ANORM, 0, 0, 'N', A, LDA, WORK, IINFO )
  853. *
  854. *
  855. ELSE IF( ITYPE.EQ.5 ) THEN
  856. *
  857. * Hermitian, eigenvalues specified
  858. *
  859. CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
  860. $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
  861. *
  862. ELSE IF( ITYPE.EQ.7 ) THEN
  863. *
  864. * Diagonal, random eigenvalues
  865. *
  866. CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
  867. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  868. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  869. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  870. *
  871. ELSE IF( ITYPE.EQ.8 ) THEN
  872. *
  873. * Hermitian, random eigenvalues
  874. *
  875. CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
  876. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  877. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  878. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  879. *
  880. ELSE IF( ITYPE.EQ.9 ) THEN
  881. *
  882. * Positive definite, eigenvalues specified.
  883. *
  884. CALL CLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE, COND,
  885. $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
  886. *
  887. ELSE IF( ITYPE.EQ.10 ) THEN
  888. *
  889. * Positive definite tridiagonal, eigenvalues specified.
  890. *
  891. CALL CLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE, COND,
  892. $ ANORM, 1, 1, 'N', A, LDA, WORK, IINFO )
  893. DO 90 I = 2, N
  894. TEMP1 = ABS( A( I-1, I ) )
  895. TEMP2 = SQRT( ABS( A( I-1, I-1 )*A( I, I ) ) )
  896. IF( TEMP1.GT.HALF*TEMP2 ) THEN
  897. A( I-1, I ) = A( I-1, I )*
  898. $ ( HALF*TEMP2 / ( UNFL+TEMP1 ) )
  899. A( I, I-1 ) = CONJG( A( I-1, I ) )
  900. END IF
  901. 90 CONTINUE
  902. *
  903. ELSE
  904. *
  905. IINFO = 1
  906. END IF
  907. *
  908. IF( IINFO.NE.0 ) THEN
  909. WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
  910. $ IOLDSD
  911. INFO = ABS( IINFO )
  912. RETURN
  913. END IF
  914. *
  915. 100 CONTINUE
  916. *
  917. * Call CHETRD and CUNGTR to compute S and U from
  918. * upper triangle.
  919. *
  920. CALL CLACPY( 'U', N, N, A, LDA, V, LDU )
  921. *
  922. NTEST = 1
  923. CALL CHETRD( 'U', N, V, LDU, SD, SE, TAU, WORK, LWORK,
  924. $ IINFO )
  925. *
  926. IF( IINFO.NE.0 ) THEN
  927. WRITE( NOUNIT, FMT = 9999 )'CHETRD(U)', IINFO, N, JTYPE,
  928. $ IOLDSD
  929. INFO = ABS( IINFO )
  930. IF( IINFO.LT.0 ) THEN
  931. RETURN
  932. ELSE
  933. RESULT( 1 ) = ULPINV
  934. GO TO 280
  935. END IF
  936. END IF
  937. *
  938. CALL CLACPY( 'U', N, N, V, LDU, U, LDU )
  939. *
  940. NTEST = 2
  941. CALL CUNGTR( 'U', N, U, LDU, TAU, WORK, LWORK, IINFO )
  942. IF( IINFO.NE.0 ) THEN
  943. WRITE( NOUNIT, FMT = 9999 )'CUNGTR(U)', IINFO, N, JTYPE,
  944. $ IOLDSD
  945. INFO = ABS( IINFO )
  946. IF( IINFO.LT.0 ) THEN
  947. RETURN
  948. ELSE
  949. RESULT( 2 ) = ULPINV
  950. GO TO 280
  951. END IF
  952. END IF
  953. *
  954. * Do tests 1 and 2
  955. *
  956. CALL CHET21( 2, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
  957. $ LDU, TAU, WORK, RWORK, RESULT( 1 ) )
  958. CALL CHET21( 3, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
  959. $ LDU, TAU, WORK, RWORK, RESULT( 2 ) )
  960. *
  961. * Call CHETRD and CUNGTR to compute S and U from
  962. * lower triangle, do tests.
  963. *
  964. CALL CLACPY( 'L', N, N, A, LDA, V, LDU )
  965. *
  966. NTEST = 3
  967. CALL CHETRD( 'L', N, V, LDU, SD, SE, TAU, WORK, LWORK,
  968. $ IINFO )
  969. *
  970. IF( IINFO.NE.0 ) THEN
  971. WRITE( NOUNIT, FMT = 9999 )'CHETRD(L)', IINFO, N, JTYPE,
  972. $ IOLDSD
  973. INFO = ABS( IINFO )
  974. IF( IINFO.LT.0 ) THEN
  975. RETURN
  976. ELSE
  977. RESULT( 3 ) = ULPINV
  978. GO TO 280
  979. END IF
  980. END IF
  981. *
  982. CALL CLACPY( 'L', N, N, V, LDU, U, LDU )
  983. *
  984. NTEST = 4
  985. CALL CUNGTR( 'L', N, U, LDU, TAU, WORK, LWORK, IINFO )
  986. IF( IINFO.NE.0 ) THEN
  987. WRITE( NOUNIT, FMT = 9999 )'CUNGTR(L)', IINFO, N, JTYPE,
  988. $ IOLDSD
  989. INFO = ABS( IINFO )
  990. IF( IINFO.LT.0 ) THEN
  991. RETURN
  992. ELSE
  993. RESULT( 4 ) = ULPINV
  994. GO TO 280
  995. END IF
  996. END IF
  997. *
  998. CALL CHET21( 2, 'Lower', N, 1, A, LDA, SD, SE, U, LDU, V,
  999. $ LDU, TAU, WORK, RWORK, RESULT( 3 ) )
  1000. CALL CHET21( 3, 'Lower', N, 1, A, LDA, SD, SE, U, LDU, V,
  1001. $ LDU, TAU, WORK, RWORK, RESULT( 4 ) )
  1002. *
  1003. * Store the upper triangle of A in AP
  1004. *
  1005. I = 0
  1006. DO 120 JC = 1, N
  1007. DO 110 JR = 1, JC
  1008. I = I + 1
  1009. AP( I ) = A( JR, JC )
  1010. 110 CONTINUE
  1011. 120 CONTINUE
  1012. *
  1013. * Call CHPTRD and CUPGTR to compute S and U from AP
  1014. *
  1015. CALL CCOPY( NAP, AP, 1, VP, 1 )
  1016. *
  1017. NTEST = 5
  1018. CALL CHPTRD( 'U', N, VP, SD, SE, TAU, IINFO )
  1019. *
  1020. IF( IINFO.NE.0 ) THEN
  1021. WRITE( NOUNIT, FMT = 9999 )'CHPTRD(U)', IINFO, N, JTYPE,
  1022. $ IOLDSD
  1023. INFO = ABS( IINFO )
  1024. IF( IINFO.LT.0 ) THEN
  1025. RETURN
  1026. ELSE
  1027. RESULT( 5 ) = ULPINV
  1028. GO TO 280
  1029. END IF
  1030. END IF
  1031. *
  1032. NTEST = 6
  1033. CALL CUPGTR( 'U', N, VP, TAU, U, LDU, WORK, IINFO )
  1034. IF( IINFO.NE.0 ) THEN
  1035. WRITE( NOUNIT, FMT = 9999 )'CUPGTR(U)', IINFO, N, JTYPE,
  1036. $ IOLDSD
  1037. INFO = ABS( IINFO )
  1038. IF( IINFO.LT.0 ) THEN
  1039. RETURN
  1040. ELSE
  1041. RESULT( 6 ) = ULPINV
  1042. GO TO 280
  1043. END IF
  1044. END IF
  1045. *
  1046. * Do tests 5 and 6
  1047. *
  1048. CALL CHPT21( 2, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
  1049. $ WORK, RWORK, RESULT( 5 ) )
  1050. CALL CHPT21( 3, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
  1051. $ WORK, RWORK, RESULT( 6 ) )
  1052. *
  1053. * Store the lower triangle of A in AP
  1054. *
  1055. I = 0
  1056. DO 140 JC = 1, N
  1057. DO 130 JR = JC, N
  1058. I = I + 1
  1059. AP( I ) = A( JR, JC )
  1060. 130 CONTINUE
  1061. 140 CONTINUE
  1062. *
  1063. * Call CHPTRD and CUPGTR to compute S and U from AP
  1064. *
  1065. CALL CCOPY( NAP, AP, 1, VP, 1 )
  1066. *
  1067. NTEST = 7
  1068. CALL CHPTRD( 'L', N, VP, SD, SE, TAU, IINFO )
  1069. *
  1070. IF( IINFO.NE.0 ) THEN
  1071. WRITE( NOUNIT, FMT = 9999 )'CHPTRD(L)', IINFO, N, JTYPE,
  1072. $ IOLDSD
  1073. INFO = ABS( IINFO )
  1074. IF( IINFO.LT.0 ) THEN
  1075. RETURN
  1076. ELSE
  1077. RESULT( 7 ) = ULPINV
  1078. GO TO 280
  1079. END IF
  1080. END IF
  1081. *
  1082. NTEST = 8
  1083. CALL CUPGTR( 'L', N, VP, TAU, U, LDU, WORK, IINFO )
  1084. IF( IINFO.NE.0 ) THEN
  1085. WRITE( NOUNIT, FMT = 9999 )'CUPGTR(L)', IINFO, N, JTYPE,
  1086. $ IOLDSD
  1087. INFO = ABS( IINFO )
  1088. IF( IINFO.LT.0 ) THEN
  1089. RETURN
  1090. ELSE
  1091. RESULT( 8 ) = ULPINV
  1092. GO TO 280
  1093. END IF
  1094. END IF
  1095. *
  1096. CALL CHPT21( 2, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
  1097. $ WORK, RWORK, RESULT( 7 ) )
  1098. CALL CHPT21( 3, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
  1099. $ WORK, RWORK, RESULT( 8 ) )
  1100. *
  1101. * Call CSTEQR to compute D1, D2, and Z, do tests.
  1102. *
  1103. * Compute D1 and Z
  1104. *
  1105. CALL SCOPY( N, SD, 1, D1, 1 )
  1106. IF( N.GT.0 )
  1107. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1108. CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
  1109. *
  1110. NTEST = 9
  1111. CALL CSTEQR( 'V', N, D1, RWORK, Z, LDU, RWORK( N+1 ),
  1112. $ IINFO )
  1113. IF( IINFO.NE.0 ) THEN
  1114. WRITE( NOUNIT, FMT = 9999 )'CSTEQR(V)', IINFO, N, JTYPE,
  1115. $ IOLDSD
  1116. INFO = ABS( IINFO )
  1117. IF( IINFO.LT.0 ) THEN
  1118. RETURN
  1119. ELSE
  1120. RESULT( 9 ) = ULPINV
  1121. GO TO 280
  1122. END IF
  1123. END IF
  1124. *
  1125. * Compute D2
  1126. *
  1127. CALL SCOPY( N, SD, 1, D2, 1 )
  1128. IF( N.GT.0 )
  1129. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1130. *
  1131. NTEST = 11
  1132. CALL CSTEQR( 'N', N, D2, RWORK, WORK, LDU, RWORK( N+1 ),
  1133. $ IINFO )
  1134. IF( IINFO.NE.0 ) THEN
  1135. WRITE( NOUNIT, FMT = 9999 )'CSTEQR(N)', IINFO, N, JTYPE,
  1136. $ IOLDSD
  1137. INFO = ABS( IINFO )
  1138. IF( IINFO.LT.0 ) THEN
  1139. RETURN
  1140. ELSE
  1141. RESULT( 11 ) = ULPINV
  1142. GO TO 280
  1143. END IF
  1144. END IF
  1145. *
  1146. * Compute D3 (using PWK method)
  1147. *
  1148. CALL SCOPY( N, SD, 1, D3, 1 )
  1149. IF( N.GT.0 )
  1150. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1151. *
  1152. NTEST = 12
  1153. CALL SSTERF( N, D3, RWORK, IINFO )
  1154. IF( IINFO.NE.0 ) THEN
  1155. WRITE( NOUNIT, FMT = 9999 )'SSTERF', IINFO, N, JTYPE,
  1156. $ IOLDSD
  1157. INFO = ABS( IINFO )
  1158. IF( IINFO.LT.0 ) THEN
  1159. RETURN
  1160. ELSE
  1161. RESULT( 12 ) = ULPINV
  1162. GO TO 280
  1163. END IF
  1164. END IF
  1165. *
  1166. * Do Tests 9 and 10
  1167. *
  1168. CALL CSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK,
  1169. $ RESULT( 9 ) )
  1170. *
  1171. * Do Tests 11 and 12
  1172. *
  1173. TEMP1 = ZERO
  1174. TEMP2 = ZERO
  1175. TEMP3 = ZERO
  1176. TEMP4 = ZERO
  1177. *
  1178. DO 150 J = 1, N
  1179. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
  1180. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1181. TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
  1182. TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
  1183. 150 CONTINUE
  1184. *
  1185. RESULT( 11 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
  1186. RESULT( 12 ) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
  1187. *
  1188. * Do Test 13 -- Sturm Sequence Test of Eigenvalues
  1189. * Go up by factors of two until it succeeds
  1190. *
  1191. NTEST = 13
  1192. TEMP1 = THRESH*( HALF-ULP )
  1193. *
  1194. DO 160 J = 0, LOG2UI
  1195. CALL SSTECH( N, SD, SE, D1, TEMP1, RWORK, IINFO )
  1196. IF( IINFO.EQ.0 )
  1197. $ GO TO 170
  1198. TEMP1 = TEMP1*TWO
  1199. 160 CONTINUE
  1200. *
  1201. 170 CONTINUE
  1202. RESULT( 13 ) = TEMP1
  1203. *
  1204. * For positive definite matrices ( JTYPE.GT.15 ) call CPTEQR
  1205. * and do tests 14, 15, and 16 .
  1206. *
  1207. IF( JTYPE.GT.15 ) THEN
  1208. *
  1209. * Compute D4 and Z4
  1210. *
  1211. CALL SCOPY( N, SD, 1, D4, 1 )
  1212. IF( N.GT.0 )
  1213. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1214. CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
  1215. *
  1216. NTEST = 14
  1217. CALL CPTEQR( 'V', N, D4, RWORK, Z, LDU, RWORK( N+1 ),
  1218. $ IINFO )
  1219. IF( IINFO.NE.0 ) THEN
  1220. WRITE( NOUNIT, FMT = 9999 )'CPTEQR(V)', IINFO, N,
  1221. $ JTYPE, IOLDSD
  1222. INFO = ABS( IINFO )
  1223. IF( IINFO.LT.0 ) THEN
  1224. RETURN
  1225. ELSE
  1226. RESULT( 14 ) = ULPINV
  1227. GO TO 280
  1228. END IF
  1229. END IF
  1230. *
  1231. * Do Tests 14 and 15
  1232. *
  1233. CALL CSTT21( N, 0, SD, SE, D4, DUMMA, Z, LDU, WORK,
  1234. $ RWORK, RESULT( 14 ) )
  1235. *
  1236. * Compute D5
  1237. *
  1238. CALL SCOPY( N, SD, 1, D5, 1 )
  1239. IF( N.GT.0 )
  1240. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1241. *
  1242. NTEST = 16
  1243. CALL CPTEQR( 'N', N, D5, RWORK, Z, LDU, RWORK( N+1 ),
  1244. $ IINFO )
  1245. IF( IINFO.NE.0 ) THEN
  1246. WRITE( NOUNIT, FMT = 9999 )'CPTEQR(N)', IINFO, N,
  1247. $ JTYPE, IOLDSD
  1248. INFO = ABS( IINFO )
  1249. IF( IINFO.LT.0 ) THEN
  1250. RETURN
  1251. ELSE
  1252. RESULT( 16 ) = ULPINV
  1253. GO TO 280
  1254. END IF
  1255. END IF
  1256. *
  1257. * Do Test 16
  1258. *
  1259. TEMP1 = ZERO
  1260. TEMP2 = ZERO
  1261. DO 180 J = 1, N
  1262. TEMP1 = MAX( TEMP1, ABS( D4( J ) ), ABS( D5( J ) ) )
  1263. TEMP2 = MAX( TEMP2, ABS( D4( J )-D5( J ) ) )
  1264. 180 CONTINUE
  1265. *
  1266. RESULT( 16 ) = TEMP2 / MAX( UNFL,
  1267. $ HUN*ULP*MAX( TEMP1, TEMP2 ) )
  1268. ELSE
  1269. RESULT( 14 ) = ZERO
  1270. RESULT( 15 ) = ZERO
  1271. RESULT( 16 ) = ZERO
  1272. END IF
  1273. *
  1274. * Call SSTEBZ with different options and do tests 17-18.
  1275. *
  1276. * If S is positive definite and diagonally dominant,
  1277. * ask for all eigenvalues with high relative accuracy.
  1278. *
  1279. VL = ZERO
  1280. VU = ZERO
  1281. IL = 0
  1282. IU = 0
  1283. IF( JTYPE.EQ.21 ) THEN
  1284. NTEST = 17
  1285. ABSTOL = UNFL + UNFL
  1286. CALL SSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
  1287. $ M, NSPLIT, WR, IWORK( 1 ), IWORK( N+1 ),
  1288. $ RWORK, IWORK( 2*N+1 ), IINFO )
  1289. IF( IINFO.NE.0 ) THEN
  1290. WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(A,rel)', IINFO, N,
  1291. $ JTYPE, IOLDSD
  1292. INFO = ABS( IINFO )
  1293. IF( IINFO.LT.0 ) THEN
  1294. RETURN
  1295. ELSE
  1296. RESULT( 17 ) = ULPINV
  1297. GO TO 280
  1298. END IF
  1299. END IF
  1300. *
  1301. * Do test 17
  1302. *
  1303. TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
  1304. $ ( ONE-HALF )**4
  1305. *
  1306. TEMP1 = ZERO
  1307. DO 190 J = 1, N
  1308. TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
  1309. $ ( ABSTOL+ABS( D4( J ) ) ) )
  1310. 190 CONTINUE
  1311. *
  1312. RESULT( 17 ) = TEMP1 / TEMP2
  1313. ELSE
  1314. RESULT( 17 ) = ZERO
  1315. END IF
  1316. *
  1317. * Now ask for all eigenvalues with high absolute accuracy.
  1318. *
  1319. NTEST = 18
  1320. ABSTOL = UNFL + UNFL
  1321. CALL SSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
  1322. $ NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), RWORK,
  1323. $ IWORK( 2*N+1 ), IINFO )
  1324. IF( IINFO.NE.0 ) THEN
  1325. WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(A)', IINFO, N, JTYPE,
  1326. $ IOLDSD
  1327. INFO = ABS( IINFO )
  1328. IF( IINFO.LT.0 ) THEN
  1329. RETURN
  1330. ELSE
  1331. RESULT( 18 ) = ULPINV
  1332. GO TO 280
  1333. END IF
  1334. END IF
  1335. *
  1336. * Do test 18
  1337. *
  1338. TEMP1 = ZERO
  1339. TEMP2 = ZERO
  1340. DO 200 J = 1, N
  1341. TEMP1 = MAX( TEMP1, ABS( D3( J ) ), ABS( WA1( J ) ) )
  1342. TEMP2 = MAX( TEMP2, ABS( D3( J )-WA1( J ) ) )
  1343. 200 CONTINUE
  1344. *
  1345. RESULT( 18 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
  1346. *
  1347. * Choose random values for IL and IU, and ask for the
  1348. * IL-th through IU-th eigenvalues.
  1349. *
  1350. NTEST = 19
  1351. IF( N.LE.1 ) THEN
  1352. IL = 1
  1353. IU = N
  1354. ELSE
  1355. IL = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
  1356. IU = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
  1357. IF( IU.LT.IL ) THEN
  1358. ITEMP = IU
  1359. IU = IL
  1360. IL = ITEMP
  1361. END IF
  1362. END IF
  1363. *
  1364. CALL SSTEBZ( 'I', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
  1365. $ M2, NSPLIT, WA2, IWORK( 1 ), IWORK( N+1 ),
  1366. $ RWORK, IWORK( 2*N+1 ), IINFO )
  1367. IF( IINFO.NE.0 ) THEN
  1368. WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(I)', IINFO, N, JTYPE,
  1369. $ IOLDSD
  1370. INFO = ABS( IINFO )
  1371. IF( IINFO.LT.0 ) THEN
  1372. RETURN
  1373. ELSE
  1374. RESULT( 19 ) = ULPINV
  1375. GO TO 280
  1376. END IF
  1377. END IF
  1378. *
  1379. * Determine the values VL and VU of the IL-th and IU-th
  1380. * eigenvalues and ask for all eigenvalues in this range.
  1381. *
  1382. IF( N.GT.0 ) THEN
  1383. IF( IL.NE.1 ) THEN
  1384. VL = WA1( IL ) - MAX( HALF*( WA1( IL )-WA1( IL-1 ) ),
  1385. $ ULP*ANORM, TWO*RTUNFL )
  1386. ELSE
  1387. VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ),
  1388. $ ULP*ANORM, TWO*RTUNFL )
  1389. END IF
  1390. IF( IU.NE.N ) THEN
  1391. VU = WA1( IU ) + MAX( HALF*( WA1( IU+1 )-WA1( IU ) ),
  1392. $ ULP*ANORM, TWO*RTUNFL )
  1393. ELSE
  1394. VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ),
  1395. $ ULP*ANORM, TWO*RTUNFL )
  1396. END IF
  1397. ELSE
  1398. VL = ZERO
  1399. VU = ONE
  1400. END IF
  1401. *
  1402. CALL SSTEBZ( 'V', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
  1403. $ M3, NSPLIT, WA3, IWORK( 1 ), IWORK( N+1 ),
  1404. $ RWORK, IWORK( 2*N+1 ), IINFO )
  1405. IF( IINFO.NE.0 ) THEN
  1406. WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(V)', IINFO, N, JTYPE,
  1407. $ IOLDSD
  1408. INFO = ABS( IINFO )
  1409. IF( IINFO.LT.0 ) THEN
  1410. RETURN
  1411. ELSE
  1412. RESULT( 19 ) = ULPINV
  1413. GO TO 280
  1414. END IF
  1415. END IF
  1416. *
  1417. IF( M3.EQ.0 .AND. N.NE.0 ) THEN
  1418. RESULT( 19 ) = ULPINV
  1419. GO TO 280
  1420. END IF
  1421. *
  1422. * Do test 19
  1423. *
  1424. TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  1425. TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  1426. IF( N.GT.0 ) THEN
  1427. TEMP3 = MAX( ABS( WA1( N ) ), ABS( WA1( 1 ) ) )
  1428. ELSE
  1429. TEMP3 = ZERO
  1430. END IF
  1431. *
  1432. RESULT( 19 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP )
  1433. *
  1434. * Call CSTEIN to compute eigenvectors corresponding to
  1435. * eigenvalues in WA1. (First call SSTEBZ again, to make sure
  1436. * it returns these eigenvalues in the correct order.)
  1437. *
  1438. NTEST = 21
  1439. CALL SSTEBZ( 'A', 'B', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
  1440. $ NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), RWORK,
  1441. $ IWORK( 2*N+1 ), IINFO )
  1442. IF( IINFO.NE.0 ) THEN
  1443. WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(A,B)', IINFO, N,
  1444. $ JTYPE, IOLDSD
  1445. INFO = ABS( IINFO )
  1446. IF( IINFO.LT.0 ) THEN
  1447. RETURN
  1448. ELSE
  1449. RESULT( 20 ) = ULPINV
  1450. RESULT( 21 ) = ULPINV
  1451. GO TO 280
  1452. END IF
  1453. END IF
  1454. *
  1455. CALL CSTEIN( N, SD, SE, M, WA1, IWORK( 1 ), IWORK( N+1 ), Z,
  1456. $ LDU, RWORK, IWORK( 2*N+1 ), IWORK( 3*N+1 ),
  1457. $ IINFO )
  1458. IF( IINFO.NE.0 ) THEN
  1459. WRITE( NOUNIT, FMT = 9999 )'CSTEIN', IINFO, N, JTYPE,
  1460. $ IOLDSD
  1461. INFO = ABS( IINFO )
  1462. IF( IINFO.LT.0 ) THEN
  1463. RETURN
  1464. ELSE
  1465. RESULT( 20 ) = ULPINV
  1466. RESULT( 21 ) = ULPINV
  1467. GO TO 280
  1468. END IF
  1469. END IF
  1470. *
  1471. * Do tests 20 and 21
  1472. *
  1473. CALL CSTT21( N, 0, SD, SE, WA1, DUMMA, Z, LDU, WORK, RWORK,
  1474. $ RESULT( 20 ) )
  1475. *
  1476. * Call CSTEDC(I) to compute D1 and Z, do tests.
  1477. *
  1478. * Compute D1 and Z
  1479. *
  1480. INDE = 1
  1481. INDRWK = INDE + N
  1482. CALL SCOPY( N, SD, 1, D1, 1 )
  1483. IF( N.GT.0 )
  1484. $ CALL SCOPY( N-1, SE, 1, RWORK( INDE ), 1 )
  1485. CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
  1486. *
  1487. NTEST = 22
  1488. CALL CSTEDC( 'I', N, D1, RWORK( INDE ), Z, LDU, WORK, LWEDC,
  1489. $ RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO )
  1490. IF( IINFO.NE.0 ) THEN
  1491. WRITE( NOUNIT, FMT = 9999 )'CSTEDC(I)', IINFO, N, JTYPE,
  1492. $ IOLDSD
  1493. INFO = ABS( IINFO )
  1494. IF( IINFO.LT.0 ) THEN
  1495. RETURN
  1496. ELSE
  1497. RESULT( 22 ) = ULPINV
  1498. GO TO 280
  1499. END IF
  1500. END IF
  1501. *
  1502. * Do Tests 22 and 23
  1503. *
  1504. CALL CSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK,
  1505. $ RESULT( 22 ) )
  1506. *
  1507. * Call CSTEDC(V) to compute D1 and Z, do tests.
  1508. *
  1509. * Compute D1 and Z
  1510. *
  1511. CALL SCOPY( N, SD, 1, D1, 1 )
  1512. IF( N.GT.0 )
  1513. $ CALL SCOPY( N-1, SE, 1, RWORK( INDE ), 1 )
  1514. CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
  1515. *
  1516. NTEST = 24
  1517. CALL CSTEDC( 'V', N, D1, RWORK( INDE ), Z, LDU, WORK, LWEDC,
  1518. $ RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO )
  1519. IF( IINFO.NE.0 ) THEN
  1520. WRITE( NOUNIT, FMT = 9999 )'CSTEDC(V)', IINFO, N, JTYPE,
  1521. $ IOLDSD
  1522. INFO = ABS( IINFO )
  1523. IF( IINFO.LT.0 ) THEN
  1524. RETURN
  1525. ELSE
  1526. RESULT( 24 ) = ULPINV
  1527. GO TO 280
  1528. END IF
  1529. END IF
  1530. *
  1531. * Do Tests 24 and 25
  1532. *
  1533. CALL CSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK,
  1534. $ RESULT( 24 ) )
  1535. *
  1536. * Call CSTEDC(N) to compute D2, do tests.
  1537. *
  1538. * Compute D2
  1539. *
  1540. CALL SCOPY( N, SD, 1, D2, 1 )
  1541. IF( N.GT.0 )
  1542. $ CALL SCOPY( N-1, SE, 1, RWORK( INDE ), 1 )
  1543. CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
  1544. *
  1545. NTEST = 26
  1546. CALL CSTEDC( 'N', N, D2, RWORK( INDE ), Z, LDU, WORK, LWEDC,
  1547. $ RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO )
  1548. IF( IINFO.NE.0 ) THEN
  1549. WRITE( NOUNIT, FMT = 9999 )'CSTEDC(N)', IINFO, N, JTYPE,
  1550. $ IOLDSD
  1551. INFO = ABS( IINFO )
  1552. IF( IINFO.LT.0 ) THEN
  1553. RETURN
  1554. ELSE
  1555. RESULT( 26 ) = ULPINV
  1556. GO TO 280
  1557. END IF
  1558. END IF
  1559. *
  1560. * Do Test 26
  1561. *
  1562. TEMP1 = ZERO
  1563. TEMP2 = ZERO
  1564. *
  1565. DO 210 J = 1, N
  1566. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
  1567. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1568. 210 CONTINUE
  1569. *
  1570. RESULT( 26 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
  1571. *
  1572. * Only test CSTEMR if IEEE compliant
  1573. *
  1574. IF( ILAENV( 10, 'CSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 .AND.
  1575. $ ILAENV( 11, 'CSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 ) THEN
  1576. *
  1577. * Call CSTEMR, do test 27 (relative eigenvalue accuracy)
  1578. *
  1579. * If S is positive definite and diagonally dominant,
  1580. * ask for all eigenvalues with high relative accuracy.
  1581. *
  1582. VL = ZERO
  1583. VU = ZERO
  1584. IL = 0
  1585. IU = 0
  1586. IF( JTYPE.EQ.21 .AND. CREL ) THEN
  1587. NTEST = 27
  1588. ABSTOL = UNFL + UNFL
  1589. CALL CSTEMR( 'V', 'A', N, SD, SE, VL, VU, IL, IU,
  1590. $ M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1591. $ RWORK, LRWORK, IWORK( 2*N+1 ), LWORK-2*N,
  1592. $ IINFO )
  1593. IF( IINFO.NE.0 ) THEN
  1594. WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,A,rel)',
  1595. $ IINFO, N, JTYPE, IOLDSD
  1596. INFO = ABS( IINFO )
  1597. IF( IINFO.LT.0 ) THEN
  1598. RETURN
  1599. ELSE
  1600. RESULT( 27 ) = ULPINV
  1601. GO TO 270
  1602. END IF
  1603. END IF
  1604. *
  1605. * Do test 27
  1606. *
  1607. TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
  1608. $ ( ONE-HALF )**4
  1609. *
  1610. TEMP1 = ZERO
  1611. DO 220 J = 1, N
  1612. TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
  1613. $ ( ABSTOL+ABS( D4( J ) ) ) )
  1614. 220 CONTINUE
  1615. *
  1616. RESULT( 27 ) = TEMP1 / TEMP2
  1617. *
  1618. IL = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
  1619. IU = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
  1620. IF( IU.LT.IL ) THEN
  1621. ITEMP = IU
  1622. IU = IL
  1623. IL = ITEMP
  1624. END IF
  1625. *
  1626. IF( CRANGE ) THEN
  1627. NTEST = 28
  1628. ABSTOL = UNFL + UNFL
  1629. CALL CSTEMR( 'V', 'I', N, SD, SE, VL, VU, IL, IU,
  1630. $ M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1631. $ RWORK, LRWORK, IWORK( 2*N+1 ),
  1632. $ LWORK-2*N, IINFO )
  1633. *
  1634. IF( IINFO.NE.0 ) THEN
  1635. WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,I,rel)',
  1636. $ IINFO, N, JTYPE, IOLDSD
  1637. INFO = ABS( IINFO )
  1638. IF( IINFO.LT.0 ) THEN
  1639. RETURN
  1640. ELSE
  1641. RESULT( 28 ) = ULPINV
  1642. GO TO 270
  1643. END IF
  1644. END IF
  1645. *
  1646. *
  1647. * Do test 28
  1648. *
  1649. TEMP2 = TWO*( TWO*N-ONE )*ULP*
  1650. $ ( ONE+EIGHT*HALF**2 ) / ( ONE-HALF )**4
  1651. *
  1652. TEMP1 = ZERO
  1653. DO 230 J = IL, IU
  1654. TEMP1 = MAX( TEMP1, ABS( WR( J-IL+1 )-D4( N-J+
  1655. $ 1 ) ) / ( ABSTOL+ABS( WR( J-IL+1 ) ) ) )
  1656. 230 CONTINUE
  1657. *
  1658. RESULT( 28 ) = TEMP1 / TEMP2
  1659. ELSE
  1660. RESULT( 28 ) = ZERO
  1661. END IF
  1662. ELSE
  1663. RESULT( 27 ) = ZERO
  1664. RESULT( 28 ) = ZERO
  1665. END IF
  1666. *
  1667. * Call CSTEMR(V,I) to compute D1 and Z, do tests.
  1668. *
  1669. * Compute D1 and Z
  1670. *
  1671. CALL SCOPY( N, SD, 1, D5, 1 )
  1672. IF( N.GT.0 )
  1673. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1674. CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
  1675. *
  1676. IF( CRANGE ) THEN
  1677. NTEST = 29
  1678. IL = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
  1679. IU = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
  1680. IF( IU.LT.IL ) THEN
  1681. ITEMP = IU
  1682. IU = IL
  1683. IL = ITEMP
  1684. END IF
  1685. CALL CSTEMR( 'V', 'I', N, D5, RWORK, VL, VU, IL, IU,
  1686. $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1687. $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
  1688. $ LIWORK-2*N, IINFO )
  1689. IF( IINFO.NE.0 ) THEN
  1690. WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,I)', IINFO,
  1691. $ N, JTYPE, IOLDSD
  1692. INFO = ABS( IINFO )
  1693. IF( IINFO.LT.0 ) THEN
  1694. RETURN
  1695. ELSE
  1696. RESULT( 29 ) = ULPINV
  1697. GO TO 280
  1698. END IF
  1699. END IF
  1700. *
  1701. * Do Tests 29 and 30
  1702. *
  1703. *
  1704. * Call CSTEMR to compute D2, do tests.
  1705. *
  1706. * Compute D2
  1707. *
  1708. CALL SCOPY( N, SD, 1, D5, 1 )
  1709. IF( N.GT.0 )
  1710. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1711. *
  1712. NTEST = 31
  1713. CALL CSTEMR( 'N', 'I', N, D5, RWORK, VL, VU, IL, IU,
  1714. $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1715. $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
  1716. $ LIWORK-2*N, IINFO )
  1717. IF( IINFO.NE.0 ) THEN
  1718. WRITE( NOUNIT, FMT = 9999 )'CSTEMR(N,I)', IINFO,
  1719. $ N, JTYPE, IOLDSD
  1720. INFO = ABS( IINFO )
  1721. IF( IINFO.LT.0 ) THEN
  1722. RETURN
  1723. ELSE
  1724. RESULT( 31 ) = ULPINV
  1725. GO TO 280
  1726. END IF
  1727. END IF
  1728. *
  1729. * Do Test 31
  1730. *
  1731. TEMP1 = ZERO
  1732. TEMP2 = ZERO
  1733. *
  1734. DO 240 J = 1, IU - IL + 1
  1735. TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
  1736. $ ABS( D2( J ) ) )
  1737. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1738. 240 CONTINUE
  1739. *
  1740. RESULT( 31 ) = TEMP2 / MAX( UNFL,
  1741. $ ULP*MAX( TEMP1, TEMP2 ) )
  1742. *
  1743. *
  1744. * Call CSTEMR(V,V) to compute D1 and Z, do tests.
  1745. *
  1746. * Compute D1 and Z
  1747. *
  1748. CALL SCOPY( N, SD, 1, D5, 1 )
  1749. IF( N.GT.0 )
  1750. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1751. CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
  1752. *
  1753. NTEST = 32
  1754. *
  1755. IF( N.GT.0 ) THEN
  1756. IF( IL.NE.1 ) THEN
  1757. VL = D2( IL ) - MAX( HALF*
  1758. $ ( D2( IL )-D2( IL-1 ) ), ULP*ANORM,
  1759. $ TWO*RTUNFL )
  1760. ELSE
  1761. VL = D2( 1 ) - MAX( HALF*( D2( N )-D2( 1 ) ),
  1762. $ ULP*ANORM, TWO*RTUNFL )
  1763. END IF
  1764. IF( IU.NE.N ) THEN
  1765. VU = D2( IU ) + MAX( HALF*
  1766. $ ( D2( IU+1 )-D2( IU ) ), ULP*ANORM,
  1767. $ TWO*RTUNFL )
  1768. ELSE
  1769. VU = D2( N ) + MAX( HALF*( D2( N )-D2( 1 ) ),
  1770. $ ULP*ANORM, TWO*RTUNFL )
  1771. END IF
  1772. ELSE
  1773. VL = ZERO
  1774. VU = ONE
  1775. END IF
  1776. *
  1777. CALL CSTEMR( 'V', 'V', N, D5, RWORK, VL, VU, IL, IU,
  1778. $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1779. $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
  1780. $ LIWORK-2*N, IINFO )
  1781. IF( IINFO.NE.0 ) THEN
  1782. WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,V)', IINFO,
  1783. $ N, JTYPE, IOLDSD
  1784. INFO = ABS( IINFO )
  1785. IF( IINFO.LT.0 ) THEN
  1786. RETURN
  1787. ELSE
  1788. RESULT( 32 ) = ULPINV
  1789. GO TO 280
  1790. END IF
  1791. END IF
  1792. *
  1793. * Do Tests 32 and 33
  1794. *
  1795. CALL CSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
  1796. $ M, RWORK, RESULT( 32 ) )
  1797. *
  1798. * Call CSTEMR to compute D2, do tests.
  1799. *
  1800. * Compute D2
  1801. *
  1802. CALL SCOPY( N, SD, 1, D5, 1 )
  1803. IF( N.GT.0 )
  1804. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1805. *
  1806. NTEST = 34
  1807. CALL CSTEMR( 'N', 'V', N, D5, RWORK, VL, VU, IL, IU,
  1808. $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1809. $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
  1810. $ LIWORK-2*N, IINFO )
  1811. IF( IINFO.NE.0 ) THEN
  1812. WRITE( NOUNIT, FMT = 9999 )'CSTEMR(N,V)', IINFO,
  1813. $ N, JTYPE, IOLDSD
  1814. INFO = ABS( IINFO )
  1815. IF( IINFO.LT.0 ) THEN
  1816. RETURN
  1817. ELSE
  1818. RESULT( 34 ) = ULPINV
  1819. GO TO 280
  1820. END IF
  1821. END IF
  1822. *
  1823. * Do Test 34
  1824. *
  1825. TEMP1 = ZERO
  1826. TEMP2 = ZERO
  1827. *
  1828. DO 250 J = 1, IU - IL + 1
  1829. TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
  1830. $ ABS( D2( J ) ) )
  1831. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1832. 250 CONTINUE
  1833. *
  1834. RESULT( 34 ) = TEMP2 / MAX( UNFL,
  1835. $ ULP*MAX( TEMP1, TEMP2 ) )
  1836. ELSE
  1837. RESULT( 29 ) = ZERO
  1838. RESULT( 30 ) = ZERO
  1839. RESULT( 31 ) = ZERO
  1840. RESULT( 32 ) = ZERO
  1841. RESULT( 33 ) = ZERO
  1842. RESULT( 34 ) = ZERO
  1843. END IF
  1844. *
  1845. *
  1846. * Call CSTEMR(V,A) to compute D1 and Z, do tests.
  1847. *
  1848. * Compute D1 and Z
  1849. *
  1850. CALL SCOPY( N, SD, 1, D5, 1 )
  1851. IF( N.GT.0 )
  1852. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1853. *
  1854. NTEST = 35
  1855. *
  1856. CALL CSTEMR( 'V', 'A', N, D5, RWORK, VL, VU, IL, IU,
  1857. $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1858. $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
  1859. $ LIWORK-2*N, IINFO )
  1860. IF( IINFO.NE.0 ) THEN
  1861. WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,A)', IINFO, N,
  1862. $ JTYPE, IOLDSD
  1863. INFO = ABS( IINFO )
  1864. IF( IINFO.LT.0 ) THEN
  1865. RETURN
  1866. ELSE
  1867. RESULT( 35 ) = ULPINV
  1868. GO TO 280
  1869. END IF
  1870. END IF
  1871. *
  1872. * Do Tests 35 and 36
  1873. *
  1874. CALL CSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, M,
  1875. $ RWORK, RESULT( 35 ) )
  1876. *
  1877. * Call CSTEMR to compute D2, do tests.
  1878. *
  1879. * Compute D2
  1880. *
  1881. CALL SCOPY( N, SD, 1, D5, 1 )
  1882. IF( N.GT.0 )
  1883. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1884. *
  1885. NTEST = 37
  1886. CALL CSTEMR( 'N', 'A', N, D5, RWORK, VL, VU, IL, IU,
  1887. $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1888. $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
  1889. $ LIWORK-2*N, IINFO )
  1890. IF( IINFO.NE.0 ) THEN
  1891. WRITE( NOUNIT, FMT = 9999 )'CSTEMR(N,A)', IINFO, N,
  1892. $ JTYPE, IOLDSD
  1893. INFO = ABS( IINFO )
  1894. IF( IINFO.LT.0 ) THEN
  1895. RETURN
  1896. ELSE
  1897. RESULT( 37 ) = ULPINV
  1898. GO TO 280
  1899. END IF
  1900. END IF
  1901. *
  1902. * Do Test 34
  1903. *
  1904. TEMP1 = ZERO
  1905. TEMP2 = ZERO
  1906. *
  1907. DO 260 J = 1, N
  1908. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
  1909. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1910. 260 CONTINUE
  1911. *
  1912. RESULT( 37 ) = TEMP2 / MAX( UNFL,
  1913. $ ULP*MAX( TEMP1, TEMP2 ) )
  1914. END IF
  1915. 270 CONTINUE
  1916. 280 CONTINUE
  1917. NTESTT = NTESTT + NTEST
  1918. *
  1919. * End of Loop -- Check for RESULT(j) > THRESH
  1920. *
  1921. *
  1922. * Print out tests which fail.
  1923. *
  1924. DO 290 JR = 1, NTEST
  1925. IF( RESULT( JR ).GE.THRESH ) THEN
  1926. *
  1927. * If this is the first test to fail,
  1928. * print a header to the data file.
  1929. *
  1930. IF( NERRS.EQ.0 ) THEN
  1931. WRITE( NOUNIT, FMT = 9998 )'CST'
  1932. WRITE( NOUNIT, FMT = 9997 )
  1933. WRITE( NOUNIT, FMT = 9996 )
  1934. WRITE( NOUNIT, FMT = 9995 )'Hermitian'
  1935. WRITE( NOUNIT, FMT = 9994 )
  1936. *
  1937. * Tests performed
  1938. *
  1939. WRITE( NOUNIT, FMT = 9987 )
  1940. END IF
  1941. NERRS = NERRS + 1
  1942. IF( RESULT( JR ).LT.10000.0E0 ) THEN
  1943. WRITE( NOUNIT, FMT = 9989 )N, JTYPE, IOLDSD, JR,
  1944. $ RESULT( JR )
  1945. ELSE
  1946. WRITE( NOUNIT, FMT = 9988 )N, JTYPE, IOLDSD, JR,
  1947. $ RESULT( JR )
  1948. END IF
  1949. END IF
  1950. 290 CONTINUE
  1951. 300 CONTINUE
  1952. 310 CONTINUE
  1953. *
  1954. * Summary
  1955. *
  1956. CALL SLASUM( 'CST', NOUNIT, NERRS, NTESTT )
  1957. RETURN
  1958. *
  1959. 9999 FORMAT( ' CCHKST: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
  1960. $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  1961. *
  1962. 9998 FORMAT( / 1X, A3, ' -- Complex Hermitian eigenvalue problem' )
  1963. 9997 FORMAT( ' Matrix types (see CCHKST for details): ' )
  1964. *
  1965. 9996 FORMAT( / ' Special Matrices:',
  1966. $ / ' 1=Zero matrix. ',
  1967. $ ' 5=Diagonal: clustered entries.',
  1968. $ / ' 2=Identity matrix. ',
  1969. $ ' 6=Diagonal: large, evenly spaced.',
  1970. $ / ' 3=Diagonal: evenly spaced entries. ',
  1971. $ ' 7=Diagonal: small, evenly spaced.',
  1972. $ / ' 4=Diagonal: geometr. spaced entries.' )
  1973. 9995 FORMAT( ' Dense ', A, ' Matrices:',
  1974. $ / ' 8=Evenly spaced eigenvals. ',
  1975. $ ' 12=Small, evenly spaced eigenvals.',
  1976. $ / ' 9=Geometrically spaced eigenvals. ',
  1977. $ ' 13=Matrix with random O(1) entries.',
  1978. $ / ' 10=Clustered eigenvalues. ',
  1979. $ ' 14=Matrix with large random entries.',
  1980. $ / ' 11=Large, evenly spaced eigenvals. ',
  1981. $ ' 15=Matrix with small random entries.' )
  1982. 9994 FORMAT( ' 16=Positive definite, evenly spaced eigenvalues',
  1983. $ / ' 17=Positive definite, geometrically spaced eigenvlaues',
  1984. $ / ' 18=Positive definite, clustered eigenvalues',
  1985. $ / ' 19=Positive definite, small evenly spaced eigenvalues',
  1986. $ / ' 20=Positive definite, large evenly spaced eigenvalues',
  1987. $ / ' 21=Diagonally dominant tridiagonal, geometrically',
  1988. $ ' spaced eigenvalues' )
  1989. *
  1990. 9989 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
  1991. $ 4( I4, ',' ), ' result ', I3, ' is', 0P, F8.2 )
  1992. 9988 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
  1993. $ 4( I4, ',' ), ' result ', I3, ' is', 1P, E10.3 )
  1994. *
  1995. 9987 FORMAT( / 'Test performed: see CCHKST for details.', / )
  1996. * End of CCHKST
  1997. *
  1998. END