You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chbmv.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380
  1. *> \brief \b CHBMV
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
  12. *
  13. * .. Scalar Arguments ..
  14. * COMPLEX ALPHA,BETA
  15. * INTEGER INCX,INCY,K,LDA,N
  16. * CHARACTER UPLO
  17. * ..
  18. * .. Array Arguments ..
  19. * COMPLEX A(LDA,*),X(*),Y(*)
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> CHBMV performs the matrix-vector operation
  29. *>
  30. *> y := alpha*A*x + beta*y,
  31. *>
  32. *> where alpha and beta are scalars, x and y are n element vectors and
  33. *> A is an n by n hermitian band matrix, with k super-diagonals.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] UPLO
  40. *> \verbatim
  41. *> UPLO is CHARACTER*1
  42. *> On entry, UPLO specifies whether the upper or lower
  43. *> triangular part of the band matrix A is being supplied as
  44. *> follows:
  45. *>
  46. *> UPLO = 'U' or 'u' The upper triangular part of A is
  47. *> being supplied.
  48. *>
  49. *> UPLO = 'L' or 'l' The lower triangular part of A is
  50. *> being supplied.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] N
  54. *> \verbatim
  55. *> N is INTEGER
  56. *> On entry, N specifies the order of the matrix A.
  57. *> N must be at least zero.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] K
  61. *> \verbatim
  62. *> K is INTEGER
  63. *> On entry, K specifies the number of super-diagonals of the
  64. *> matrix A. K must satisfy 0 .le. K.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] ALPHA
  68. *> \verbatim
  69. *> ALPHA is COMPLEX
  70. *> On entry, ALPHA specifies the scalar alpha.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] A
  74. *> \verbatim
  75. *> A is COMPLEX array, dimension ( LDA, N )
  76. *> Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
  77. *> by n part of the array A must contain the upper triangular
  78. *> band part of the hermitian matrix, supplied column by
  79. *> column, with the leading diagonal of the matrix in row
  80. *> ( k + 1 ) of the array, the first super-diagonal starting at
  81. *> position 2 in row k, and so on. The top left k by k triangle
  82. *> of the array A is not referenced.
  83. *> The following program segment will transfer the upper
  84. *> triangular part of a hermitian band matrix from conventional
  85. *> full matrix storage to band storage:
  86. *>
  87. *> DO 20, J = 1, N
  88. *> M = K + 1 - J
  89. *> DO 10, I = MAX( 1, J - K ), J
  90. *> A( M + I, J ) = matrix( I, J )
  91. *> 10 CONTINUE
  92. *> 20 CONTINUE
  93. *>
  94. *> Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
  95. *> by n part of the array A must contain the lower triangular
  96. *> band part of the hermitian matrix, supplied column by
  97. *> column, with the leading diagonal of the matrix in row 1 of
  98. *> the array, the first sub-diagonal starting at position 1 in
  99. *> row 2, and so on. The bottom right k by k triangle of the
  100. *> array A is not referenced.
  101. *> The following program segment will transfer the lower
  102. *> triangular part of a hermitian band matrix from conventional
  103. *> full matrix storage to band storage:
  104. *>
  105. *> DO 20, J = 1, N
  106. *> M = 1 - J
  107. *> DO 10, I = J, MIN( N, J + K )
  108. *> A( M + I, J ) = matrix( I, J )
  109. *> 10 CONTINUE
  110. *> 20 CONTINUE
  111. *>
  112. *> Note that the imaginary parts of the diagonal elements need
  113. *> not be set and are assumed to be zero.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] LDA
  117. *> \verbatim
  118. *> LDA is INTEGER
  119. *> On entry, LDA specifies the first dimension of A as declared
  120. *> in the calling (sub) program. LDA must be at least
  121. *> ( k + 1 ).
  122. *> \endverbatim
  123. *>
  124. *> \param[in] X
  125. *> \verbatim
  126. *> X is COMPLEX array, dimension at least
  127. *> ( 1 + ( n - 1 )*abs( INCX ) ).
  128. *> Before entry, the incremented array X must contain the
  129. *> vector x.
  130. *> \endverbatim
  131. *>
  132. *> \param[in] INCX
  133. *> \verbatim
  134. *> INCX is INTEGER
  135. *> On entry, INCX specifies the increment for the elements of
  136. *> X. INCX must not be zero.
  137. *> \endverbatim
  138. *>
  139. *> \param[in] BETA
  140. *> \verbatim
  141. *> BETA is COMPLEX
  142. *> On entry, BETA specifies the scalar beta.
  143. *> \endverbatim
  144. *>
  145. *> \param[in,out] Y
  146. *> \verbatim
  147. *> Y is COMPLEX array, dimension at least
  148. *> ( 1 + ( n - 1 )*abs( INCY ) ).
  149. *> Before entry, the incremented array Y must contain the
  150. *> vector y. On exit, Y is overwritten by the updated vector y.
  151. *> \endverbatim
  152. *>
  153. *> \param[in] INCY
  154. *> \verbatim
  155. *> INCY is INTEGER
  156. *> On entry, INCY specifies the increment for the elements of
  157. *> Y. INCY must not be zero.
  158. *> \endverbatim
  159. *
  160. * Authors:
  161. * ========
  162. *
  163. *> \author Univ. of Tennessee
  164. *> \author Univ. of California Berkeley
  165. *> \author Univ. of Colorado Denver
  166. *> \author NAG Ltd.
  167. *
  168. *> \date December 2016
  169. *
  170. *> \ingroup complex_blas_level2
  171. *
  172. *> \par Further Details:
  173. * =====================
  174. *>
  175. *> \verbatim
  176. *>
  177. *> Level 2 Blas routine.
  178. *> The vector and matrix arguments are not referenced when N = 0, or M = 0
  179. *>
  180. *> -- Written on 22-October-1986.
  181. *> Jack Dongarra, Argonne National Lab.
  182. *> Jeremy Du Croz, Nag Central Office.
  183. *> Sven Hammarling, Nag Central Office.
  184. *> Richard Hanson, Sandia National Labs.
  185. *> \endverbatim
  186. *>
  187. * =====================================================================
  188. SUBROUTINE CHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
  189. *
  190. * -- Reference BLAS level2 routine (version 3.7.0) --
  191. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  192. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  193. * December 2016
  194. *
  195. * .. Scalar Arguments ..
  196. COMPLEX ALPHA,BETA
  197. INTEGER INCX,INCY,K,LDA,N
  198. CHARACTER UPLO
  199. * ..
  200. * .. Array Arguments ..
  201. COMPLEX A(LDA,*),X(*),Y(*)
  202. * ..
  203. *
  204. * =====================================================================
  205. *
  206. * .. Parameters ..
  207. COMPLEX ONE
  208. PARAMETER (ONE= (1.0E+0,0.0E+0))
  209. COMPLEX ZERO
  210. PARAMETER (ZERO= (0.0E+0,0.0E+0))
  211. * ..
  212. * .. Local Scalars ..
  213. COMPLEX TEMP1,TEMP2
  214. INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
  215. * ..
  216. * .. External Functions ..
  217. LOGICAL LSAME
  218. EXTERNAL LSAME
  219. * ..
  220. * .. External Subroutines ..
  221. EXTERNAL XERBLA
  222. * ..
  223. * .. Intrinsic Functions ..
  224. INTRINSIC CONJG,MAX,MIN,REAL
  225. * ..
  226. *
  227. * Test the input parameters.
  228. *
  229. INFO = 0
  230. IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  231. INFO = 1
  232. ELSE IF (N.LT.0) THEN
  233. INFO = 2
  234. ELSE IF (K.LT.0) THEN
  235. INFO = 3
  236. ELSE IF (LDA.LT. (K+1)) THEN
  237. INFO = 6
  238. ELSE IF (INCX.EQ.0) THEN
  239. INFO = 8
  240. ELSE IF (INCY.EQ.0) THEN
  241. INFO = 11
  242. END IF
  243. IF (INFO.NE.0) THEN
  244. CALL XERBLA('CHBMV ',INFO)
  245. RETURN
  246. END IF
  247. *
  248. * Quick return if possible.
  249. *
  250. IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  251. *
  252. * Set up the start points in X and Y.
  253. *
  254. IF (INCX.GT.0) THEN
  255. KX = 1
  256. ELSE
  257. KX = 1 - (N-1)*INCX
  258. END IF
  259. IF (INCY.GT.0) THEN
  260. KY = 1
  261. ELSE
  262. KY = 1 - (N-1)*INCY
  263. END IF
  264. *
  265. * Start the operations. In this version the elements of the array A
  266. * are accessed sequentially with one pass through A.
  267. *
  268. * First form y := beta*y.
  269. *
  270. IF (BETA.NE.ONE) THEN
  271. IF (INCY.EQ.1) THEN
  272. IF (BETA.EQ.ZERO) THEN
  273. DO 10 I = 1,N
  274. Y(I) = ZERO
  275. 10 CONTINUE
  276. ELSE
  277. DO 20 I = 1,N
  278. Y(I) = BETA*Y(I)
  279. 20 CONTINUE
  280. END IF
  281. ELSE
  282. IY = KY
  283. IF (BETA.EQ.ZERO) THEN
  284. DO 30 I = 1,N
  285. Y(IY) = ZERO
  286. IY = IY + INCY
  287. 30 CONTINUE
  288. ELSE
  289. DO 40 I = 1,N
  290. Y(IY) = BETA*Y(IY)
  291. IY = IY + INCY
  292. 40 CONTINUE
  293. END IF
  294. END IF
  295. END IF
  296. IF (ALPHA.EQ.ZERO) RETURN
  297. IF (LSAME(UPLO,'U')) THEN
  298. *
  299. * Form y when upper triangle of A is stored.
  300. *
  301. KPLUS1 = K + 1
  302. IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  303. DO 60 J = 1,N
  304. TEMP1 = ALPHA*X(J)
  305. TEMP2 = ZERO
  306. L = KPLUS1 - J
  307. DO 50 I = MAX(1,J-K),J - 1
  308. Y(I) = Y(I) + TEMP1*A(L+I,J)
  309. TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I)
  310. 50 CONTINUE
  311. Y(J) = Y(J) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2
  312. 60 CONTINUE
  313. ELSE
  314. JX = KX
  315. JY = KY
  316. DO 80 J = 1,N
  317. TEMP1 = ALPHA*X(JX)
  318. TEMP2 = ZERO
  319. IX = KX
  320. IY = KY
  321. L = KPLUS1 - J
  322. DO 70 I = MAX(1,J-K),J - 1
  323. Y(IY) = Y(IY) + TEMP1*A(L+I,J)
  324. TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX)
  325. IX = IX + INCX
  326. IY = IY + INCY
  327. 70 CONTINUE
  328. Y(JY) = Y(JY) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2
  329. JX = JX + INCX
  330. JY = JY + INCY
  331. IF (J.GT.K) THEN
  332. KX = KX + INCX
  333. KY = KY + INCY
  334. END IF
  335. 80 CONTINUE
  336. END IF
  337. ELSE
  338. *
  339. * Form y when lower triangle of A is stored.
  340. *
  341. IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  342. DO 100 J = 1,N
  343. TEMP1 = ALPHA*X(J)
  344. TEMP2 = ZERO
  345. Y(J) = Y(J) + TEMP1*REAL(A(1,J))
  346. L = 1 - J
  347. DO 90 I = J + 1,MIN(N,J+K)
  348. Y(I) = Y(I) + TEMP1*A(L+I,J)
  349. TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I)
  350. 90 CONTINUE
  351. Y(J) = Y(J) + ALPHA*TEMP2
  352. 100 CONTINUE
  353. ELSE
  354. JX = KX
  355. JY = KY
  356. DO 120 J = 1,N
  357. TEMP1 = ALPHA*X(JX)
  358. TEMP2 = ZERO
  359. Y(JY) = Y(JY) + TEMP1*REAL(A(1,J))
  360. L = 1 - J
  361. IX = JX
  362. IY = JY
  363. DO 110 I = J + 1,MIN(N,J+K)
  364. IX = IX + INCX
  365. IY = IY + INCY
  366. Y(IY) = Y(IY) + TEMP1*A(L+I,J)
  367. TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX)
  368. 110 CONTINUE
  369. Y(JY) = Y(JY) + ALPHA*TEMP2
  370. JX = JX + INCX
  371. JY = JY + INCY
  372. 120 CONTINUE
  373. END IF
  374. END IF
  375. *
  376. RETURN
  377. *
  378. * End of CHBMV .
  379. *
  380. END