You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

level3_thread.c 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #ifndef CACHE_LINE_SIZE
  39. #define CACHE_LINE_SIZE 8
  40. #endif
  41. #ifndef DIVIDE_RATE
  42. #define DIVIDE_RATE 2
  43. #endif
  44. #ifndef SWITCH_RATIO
  45. #define SWITCH_RATIO 2
  46. #endif
  47. //The array of job_t may overflow the stack.
  48. //Instead, use malloc to alloc job_t.
  49. #if MAX_CPU_NUMBER > BLAS3_MEM_ALLOC_THRESHOLD
  50. #define USE_ALLOC_HEAP
  51. #endif
  52. #ifndef GEMM_LOCAL
  53. #if defined(NN)
  54. #define GEMM_LOCAL GEMM_NN
  55. #elif defined(NT)
  56. #define GEMM_LOCAL GEMM_NT
  57. #elif defined(NR)
  58. #define GEMM_LOCAL GEMM_NR
  59. #elif defined(NC)
  60. #define GEMM_LOCAL GEMM_NC
  61. #elif defined(TN)
  62. #define GEMM_LOCAL GEMM_TN
  63. #elif defined(TT)
  64. #define GEMM_LOCAL GEMM_TT
  65. #elif defined(TR)
  66. #define GEMM_LOCAL GEMM_TR
  67. #elif defined(TC)
  68. #define GEMM_LOCAL GEMM_TC
  69. #elif defined(RN)
  70. #define GEMM_LOCAL GEMM_RN
  71. #elif defined(RT)
  72. #define GEMM_LOCAL GEMM_RT
  73. #elif defined(RR)
  74. #define GEMM_LOCAL GEMM_RR
  75. #elif defined(RC)
  76. #define GEMM_LOCAL GEMM_RC
  77. #elif defined(CN)
  78. #define GEMM_LOCAL GEMM_CN
  79. #elif defined(CT)
  80. #define GEMM_LOCAL GEMM_CT
  81. #elif defined(CR)
  82. #define GEMM_LOCAL GEMM_CR
  83. #elif defined(CC)
  84. #define GEMM_LOCAL GEMM_CC
  85. #endif
  86. #endif
  87. typedef struct {
  88. volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
  89. } job_t;
  90. #ifndef BETA_OPERATION
  91. #ifndef COMPLEX
  92. #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
  93. GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
  94. BETA[0], NULL, 0, NULL, 0, \
  95. (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
  96. #else
  97. #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
  98. GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
  99. BETA[0], BETA[1], NULL, 0, NULL, 0, \
  100. (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
  101. #endif
  102. #endif
  103. #ifndef ICOPY_OPERATION
  104. #if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
  105. defined(RN) || defined(RT) || defined(RC) || defined(RR)
  106. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  107. #else
  108. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  109. #endif
  110. #endif
  111. #ifndef OCOPY_OPERATION
  112. #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
  113. defined(NR) || defined(TR) || defined(CR) || defined(RR)
  114. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  115. #else
  116. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  117. #endif
  118. #endif
  119. #ifndef KERNEL_FUNC
  120. #if defined(NN) || defined(NT) || defined(TN) || defined(TT)
  121. #define KERNEL_FUNC GEMM_KERNEL_N
  122. #endif
  123. #if defined(CN) || defined(CT) || defined(RN) || defined(RT)
  124. #define KERNEL_FUNC GEMM_KERNEL_L
  125. #endif
  126. #if defined(NC) || defined(TC) || defined(NR) || defined(TR)
  127. #define KERNEL_FUNC GEMM_KERNEL_R
  128. #endif
  129. #if defined(CC) || defined(CR) || defined(RC) || defined(RR)
  130. #define KERNEL_FUNC GEMM_KERNEL_B
  131. #endif
  132. #endif
  133. #ifndef KERNEL_OPERATION
  134. #ifndef COMPLEX
  135. #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
  136. KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  137. #else
  138. #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
  139. KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  140. #endif
  141. #endif
  142. #ifndef FUSED_KERNEL_OPERATION
  143. #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
  144. defined(NR) || defined(TR) || defined(CR) || defined(RR)
  145. #ifndef COMPLEX
  146. #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
  147. FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], SA, SB, \
  148. (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
  149. #else
  150. #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
  151. FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
  152. (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
  153. #endif
  154. #else
  155. #ifndef COMPLEX
  156. #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
  157. FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], SA, SB, \
  158. (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
  159. #else
  160. #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
  161. FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
  162. (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
  163. #endif
  164. #endif
  165. #endif
  166. #ifndef A
  167. #define A args -> a
  168. #endif
  169. #ifndef LDA
  170. #define LDA args -> lda
  171. #endif
  172. #ifndef B
  173. #define B args -> b
  174. #endif
  175. #ifndef LDB
  176. #define LDB args -> ldb
  177. #endif
  178. #ifndef C
  179. #define C args -> c
  180. #endif
  181. #ifndef LDC
  182. #define LDC args -> ldc
  183. #endif
  184. #ifndef M
  185. #define M args -> m
  186. #endif
  187. #ifndef N
  188. #define N args -> n
  189. #endif
  190. #ifndef K
  191. #define K args -> k
  192. #endif
  193. #ifdef TIMING
  194. #define START_RPCC() rpcc_counter = rpcc()
  195. #define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter
  196. #else
  197. #define START_RPCC()
  198. #define STOP_RPCC(COUNTER)
  199. #endif
  200. static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  201. FLOAT *buffer[DIVIDE_RATE];
  202. BLASLONG k, lda, ldb, ldc;
  203. BLASLONG m_from, m_to, n_from, n_to, N_from, N_to;
  204. FLOAT *alpha, *beta;
  205. FLOAT *a, *b, *c;
  206. job_t *job = (job_t *)args -> common;
  207. BLASLONG xxx, bufferside;
  208. BLASLONG ls, min_l, jjs, min_jj;
  209. BLASLONG is, min_i, div_n;
  210. BLASLONG i, current;
  211. BLASLONG l1stride, l2size;
  212. #ifdef TIMING
  213. BLASULONG rpcc_counter;
  214. BLASULONG copy_A = 0;
  215. BLASULONG copy_B = 0;
  216. BLASULONG kernel = 0;
  217. BLASULONG waiting1 = 0;
  218. BLASULONG waiting2 = 0;
  219. BLASULONG waiting3 = 0;
  220. BLASULONG waiting6[MAX_CPU_NUMBER];
  221. BLASULONG ops = 0;
  222. for (i = 0; i < args -> nthreads; i++) waiting6[i] = 0;
  223. #endif
  224. k = K;
  225. a = (FLOAT *)A;
  226. b = (FLOAT *)B;
  227. c = (FLOAT *)C;
  228. lda = LDA;
  229. ldb = LDB;
  230. ldc = LDC;
  231. alpha = (FLOAT *)args -> alpha;
  232. beta = (FLOAT *)args -> beta;
  233. m_from = 0;
  234. m_to = M;
  235. if (range_m) {
  236. m_from = range_m[0];
  237. m_to = range_m[1];
  238. }
  239. n_from = 0;
  240. n_to = N;
  241. N_from = 0;
  242. N_to = N;
  243. if (range_n) {
  244. n_from = range_n[mypos + 0];
  245. n_to = range_n[mypos + 1];
  246. N_from = range_n[0];
  247. N_to = range_n[args -> nthreads];
  248. }
  249. if (beta) {
  250. #ifndef COMPLEX
  251. if (beta[0] != ONE)
  252. #else
  253. if ((beta[0] != ONE) || (beta[1] != ZERO))
  254. #endif
  255. BETA_OPERATION(m_from, m_to, N_from, N_to, beta, c, ldc);
  256. }
  257. if ((k == 0) || (alpha == NULL)) return 0;
  258. if ((alpha[0] == ZERO)
  259. #ifdef COMPLEX
  260. && (alpha[1] == ZERO)
  261. #endif
  262. ) return 0;
  263. l2size = GEMM_P * GEMM_Q;
  264. #if 0
  265. fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld n_from : %ld n_to : %ld N_from : %ld N_to : %ld\n",
  266. mypos, m_from, m_to, n_from, n_to, N_from, N_to);
  267. fprintf(stderr, "GEMM: P = %4ld Q = %4ld R = %4ld\n", (BLASLONG)GEMM_P, (BLASLONG)GEMM_Q, (BLASLONG)GEMM_R);
  268. #endif
  269. div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
  270. buffer[0] = sb;
  271. for (i = 1; i < DIVIDE_RATE; i++) {
  272. buffer[i] = buffer[i - 1] + GEMM_Q * ((div_n + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1)) * COMPSIZE;
  273. }
  274. for(ls = 0; ls < k; ls += min_l){
  275. min_l = k - ls;
  276. if (min_l >= GEMM_Q * 2) {
  277. min_l = GEMM_Q;
  278. } else {
  279. if (min_l > GEMM_Q) min_l = (min_l + 1) / 2;
  280. }
  281. l1stride = 1;
  282. min_i = m_to - m_from;
  283. if (min_i >= GEMM_P * 2) {
  284. min_i = GEMM_P;
  285. } else {
  286. if (min_i > GEMM_P) {
  287. min_i = (min_i / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1);
  288. } else {
  289. if (args -> nthreads == 1) l1stride = 0;
  290. }
  291. }
  292. START_RPCC();
  293. ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
  294. STOP_RPCC(copy_A);
  295. div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
  296. for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) {
  297. START_RPCC();
  298. /* Make sure if no one is using buffer */
  299. for (i = 0; i < args -> nthreads; i++)
  300. while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {YIELDING;};
  301. STOP_RPCC(waiting1);
  302. #if defined(FUSED_GEMM) && !defined(TIMING)
  303. FUSED_KERNEL_OPERATION(min_i, MIN(n_to, xxx + div_n) - xxx, min_l, alpha,
  304. sa, buffer[bufferside], b, ldb, c, ldc, m_from, xxx, ls);
  305. #else
  306. for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){
  307. min_jj = MIN(n_to, xxx + div_n) - jjs;
  308. if (min_jj >= 3*GEMM_UNROLL_N) min_jj = 3*GEMM_UNROLL_N;
  309. else
  310. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  311. START_RPCC();
  312. OCOPY_OPERATION(min_l, min_jj, b, ldb, ls, jjs,
  313. buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE * l1stride);
  314. STOP_RPCC(copy_B);
  315. START_RPCC();
  316. KERNEL_OPERATION(min_i, min_jj, min_l, alpha,
  317. sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE * l1stride,
  318. c, ldc, m_from, jjs);
  319. STOP_RPCC(kernel);
  320. #ifdef TIMING
  321. ops += 2 * min_i * min_jj * min_l;
  322. #endif
  323. }
  324. #endif
  325. for (i = 0; i < args -> nthreads; i++) job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
  326. WMB;
  327. }
  328. current = mypos;
  329. do {
  330. current ++;
  331. if (current >= args -> nthreads) current = 0;
  332. div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
  333. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  334. if (current != mypos) {
  335. START_RPCC();
  336. /* thread has to wait */
  337. while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;};
  338. STOP_RPCC(waiting2);
  339. START_RPCC();
  340. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
  341. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  342. c, ldc, m_from, xxx);
  343. STOP_RPCC(kernel);
  344. #ifdef TIMING
  345. ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l;
  346. #endif
  347. }
  348. if (m_to - m_from == min_i) {
  349. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
  350. }
  351. }
  352. } while (current != mypos);
  353. for(is = m_from + min_i; is < m_to; is += min_i){
  354. min_i = m_to - is;
  355. if (min_i >= GEMM_P * 2) {
  356. min_i = GEMM_P;
  357. } else
  358. if (min_i > GEMM_P) {
  359. min_i = ((min_i + 1) / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1);
  360. }
  361. START_RPCC();
  362. ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
  363. STOP_RPCC(copy_A);
  364. current = mypos;
  365. do {
  366. div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
  367. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  368. START_RPCC();
  369. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
  370. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  371. c, ldc, is, xxx);
  372. STOP_RPCC(kernel);
  373. #ifdef TIMING
  374. ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l;
  375. #endif
  376. if (is + min_i >= m_to) {
  377. /* Thread doesn't need this buffer any more */
  378. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
  379. WMB;
  380. }
  381. }
  382. current ++;
  383. if (current >= args -> nthreads) current = 0;
  384. } while (current != mypos);
  385. }
  386. }
  387. START_RPCC();
  388. for (i = 0; i < args -> nthreads; i++) {
  389. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  390. while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;};
  391. }
  392. }
  393. STOP_RPCC(waiting3);
  394. #ifdef TIMING
  395. BLASLONG waiting = waiting1 + waiting2 + waiting3;
  396. BLASLONG total = copy_A + copy_B + kernel + waiting;
  397. fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2f Copy_B : %6.2f Wait1 : %6.2f Wait2 : %6.2f Wait3 : %6.2f Kernel : %6.2f",
  398. mypos, (double)copy_A /(double)total * 100., (double)copy_B /(double)total * 100.,
  399. (double)waiting1 /(double)total * 100.,
  400. (double)waiting2 /(double)total * 100.,
  401. (double)waiting3 /(double)total * 100.,
  402. (double)ops/(double)kernel / 4. * 100.);
  403. #if 0
  404. fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2ld Copy_B : %6.2ld Wait : %6.2ld\n",
  405. mypos, copy_A, copy_B, waiting);
  406. fprintf(stderr, "Waiting[%2ld] %6.2f %6.2f %6.2f\n",
  407. mypos,
  408. (double)waiting1/(double)waiting * 100.,
  409. (double)waiting2/(double)waiting * 100.,
  410. (double)waiting3/(double)waiting * 100.);
  411. #endif
  412. fprintf(stderr, "\n");
  413. #endif
  414. return 0;
  415. }
  416. static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG
  417. *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  418. blas_arg_t newarg;
  419. #ifndef USE_ALLOC_HEAP
  420. job_t job[MAX_CPU_NUMBER];
  421. #else
  422. job_t * job = NULL;
  423. #endif
  424. blas_queue_t queue[MAX_CPU_NUMBER];
  425. BLASLONG range_M[MAX_CPU_NUMBER + 1];
  426. BLASLONG range_N[MAX_CPU_NUMBER + 1];
  427. BLASLONG num_cpu_m, num_cpu_n;
  428. BLASLONG nthreads = args -> nthreads;
  429. BLASLONG width, i, j, k, js;
  430. BLASLONG m, n, n_from, n_to;
  431. int mode;
  432. #ifndef COMPLEX
  433. #ifdef XDOUBLE
  434. mode = BLAS_XDOUBLE | BLAS_REAL | BLAS_NODE;
  435. #elif defined(DOUBLE)
  436. mode = BLAS_DOUBLE | BLAS_REAL | BLAS_NODE;
  437. #else
  438. mode = BLAS_SINGLE | BLAS_REAL | BLAS_NODE;
  439. #endif
  440. #else
  441. #ifdef XDOUBLE
  442. mode = BLAS_XDOUBLE | BLAS_COMPLEX | BLAS_NODE;
  443. #elif defined(DOUBLE)
  444. mode = BLAS_DOUBLE | BLAS_COMPLEX | BLAS_NODE;
  445. #else
  446. mode = BLAS_SINGLE | BLAS_COMPLEX | BLAS_NODE;
  447. #endif
  448. #endif
  449. newarg.m = args -> m;
  450. newarg.n = args -> n;
  451. newarg.k = args -> k;
  452. newarg.a = args -> a;
  453. newarg.b = args -> b;
  454. newarg.c = args -> c;
  455. newarg.lda = args -> lda;
  456. newarg.ldb = args -> ldb;
  457. newarg.ldc = args -> ldc;
  458. newarg.alpha = args -> alpha;
  459. newarg.beta = args -> beta;
  460. newarg.nthreads = args -> nthreads;
  461. #ifdef USE_ALLOC_HEAP
  462. job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
  463. if(job==NULL){
  464. fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
  465. exit(1);
  466. }
  467. #endif
  468. newarg.common = (void *)job;
  469. #ifdef PARAMTEST
  470. newarg.gemm_p = args -> gemm_p;
  471. newarg.gemm_q = args -> gemm_q;
  472. newarg.gemm_r = args -> gemm_r;
  473. #endif
  474. if (!range_m) {
  475. range_M[0] = 0;
  476. m = args -> m;
  477. } else {
  478. range_M[0] = range_m[0];
  479. m = range_m[1] - range_m[0];
  480. }
  481. num_cpu_m = 0;
  482. while (m > 0){
  483. width = blas_quickdivide(m + nthreads - num_cpu_m - 1, nthreads - num_cpu_m);
  484. m -= width;
  485. if (m < 0) width = width + m;
  486. range_M[num_cpu_m + 1] = range_M[num_cpu_m] + width;
  487. num_cpu_m ++;
  488. }
  489. for (i = 0; i < num_cpu_m; i++) {
  490. queue[i].mode = mode;
  491. queue[i].routine = inner_thread;
  492. queue[i].args = &newarg;
  493. queue[i].range_m = &range_M[i];
  494. queue[i].range_n = &range_N[0];
  495. queue[i].sa = NULL;
  496. queue[i].sb = NULL;
  497. queue[i].next = &queue[i + 1];
  498. }
  499. queue[0].sa = sa;
  500. queue[0].sb = sb;
  501. if (!range_n) {
  502. n_from = 0;
  503. n_to = args -> n;
  504. } else {
  505. n_from = range_n[0];
  506. n_to = range_n[1];
  507. }
  508. for(js = n_from; js < n_to; js += GEMM_R * nthreads){
  509. n = n_to - js;
  510. if (n > GEMM_R * nthreads) n = GEMM_R * nthreads;
  511. range_N[0] = js;
  512. num_cpu_n = 0;
  513. while (n > 0){
  514. width = blas_quickdivide(n + nthreads - num_cpu_n - 1, nthreads - num_cpu_n);
  515. n -= width;
  516. if (n < 0) width = width + n;
  517. range_N[num_cpu_n + 1] = range_N[num_cpu_n] + width;
  518. num_cpu_n ++;
  519. }
  520. for (j = 0; j < num_cpu_m; j++) {
  521. for (i = 0; i < num_cpu_m; i++) {
  522. for (k = 0; k < DIVIDE_RATE; k++) {
  523. job[j].working[i][CACHE_LINE_SIZE * k] = 0;
  524. }
  525. }
  526. }
  527. queue[num_cpu_m - 1].next = NULL;
  528. exec_blas(num_cpu_m, queue);
  529. }
  530. #ifdef USE_ALLOC_HEAP
  531. free(job);
  532. #endif
  533. return 0;
  534. }
  535. int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  536. BLASLONG m = args -> m;
  537. BLASLONG n = args -> n;
  538. BLASLONG nthreads = args -> nthreads;
  539. BLASLONG divN, divT;
  540. int mode;
  541. if (nthreads == 1) {
  542. GEMM_LOCAL(args, range_m, range_n, sa, sb, 0);
  543. return 0;
  544. }
  545. if (range_m) {
  546. BLASLONG m_from = *(((BLASLONG *)range_m) + 0);
  547. BLASLONG m_to = *(((BLASLONG *)range_m) + 1);
  548. m = m_to - m_from;
  549. }
  550. if (range_n) {
  551. BLASLONG n_from = *(((BLASLONG *)range_n) + 0);
  552. BLASLONG n_to = *(((BLASLONG *)range_n) + 1);
  553. n = n_to - n_from;
  554. }
  555. if ((args -> m < nthreads * SWITCH_RATIO) || (args -> n < nthreads * SWITCH_RATIO)) {
  556. GEMM_LOCAL(args, range_m, range_n, sa, sb, 0);
  557. return 0;
  558. }
  559. divT = nthreads;
  560. divN = 1;
  561. #if 0
  562. while ((GEMM_P * divT > m * SWITCH_RATIO) && (divT > 1)) {
  563. do {
  564. divT --;
  565. divN = 1;
  566. while (divT * divN < nthreads) divN ++;
  567. } while ((divT * divN != nthreads) && (divT > 1));
  568. }
  569. #endif
  570. // fprintf(stderr, "divN = %4ld divT = %4ld\n", divN, divT);
  571. args -> nthreads = divT;
  572. if (divN == 1){
  573. gemm_driver(args, range_m, range_n, sa, sb, 0);
  574. } else {
  575. #ifndef COMPLEX
  576. #ifdef XDOUBLE
  577. mode = BLAS_XDOUBLE | BLAS_REAL;
  578. #elif defined(DOUBLE)
  579. mode = BLAS_DOUBLE | BLAS_REAL;
  580. #else
  581. mode = BLAS_SINGLE | BLAS_REAL;
  582. #endif
  583. #else
  584. #ifdef XDOUBLE
  585. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  586. #elif defined(DOUBLE)
  587. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  588. #else
  589. mode = BLAS_SINGLE | BLAS_COMPLEX;
  590. #endif
  591. #endif
  592. #if defined(TN) || defined(TT) || defined(TR) || defined(TC) || \
  593. defined(CN) || defined(CT) || defined(CR) || defined(CC)
  594. mode |= (BLAS_TRANSA_T);
  595. #endif
  596. #if defined(NT) || defined(TT) || defined(RT) || defined(CT) || \
  597. defined(NC) || defined(TC) || defined(RC) || defined(CC)
  598. mode |= (BLAS_TRANSB_T);
  599. #endif
  600. #ifdef OS_WINDOWS
  601. gemm_thread_n(mode, args, range_m, range_n, GEMM_LOCAL, sa, sb, divN);
  602. #else
  603. gemm_thread_n(mode, args, range_m, range_n, gemm_driver, sa, sb, divN);
  604. #endif
  605. }
  606. return 0;
  607. }