You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsptrf.f 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616
  1. *> \brief \b DSPTRF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSPTRF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsptrf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsptrf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsptrf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSPTRF( UPLO, N, AP, IPIV, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * DOUBLE PRECISION AP( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> DSPTRF computes the factorization of a real symmetric matrix A stored
  39. *> in packed format using the Bunch-Kaufman diagonal pivoting method:
  40. *>
  41. *> A = U*D*U**T or A = L*D*L**T
  42. *>
  43. *> where U (or L) is a product of permutation and unit upper (lower)
  44. *> triangular matrices, and D is symmetric and block diagonal with
  45. *> 1-by-1 and 2-by-2 diagonal blocks.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': Upper triangle of A is stored;
  55. *> = 'L': Lower triangle of A is stored.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] AP
  65. *> \verbatim
  66. *> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
  67. *> On entry, the upper or lower triangle of the symmetric matrix
  68. *> A, packed columnwise in a linear array. The j-th column of A
  69. *> is stored in the array AP as follows:
  70. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  71. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  72. *>
  73. *> On exit, the block diagonal matrix D and the multipliers used
  74. *> to obtain the factor U or L, stored as a packed triangular
  75. *> matrix overwriting A (see below for further details).
  76. *> \endverbatim
  77. *>
  78. *> \param[out] IPIV
  79. *> \verbatim
  80. *> IPIV is INTEGER array, dimension (N)
  81. *> Details of the interchanges and the block structure of D.
  82. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  83. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  84. *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
  85. *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  86. *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
  87. *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
  88. *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  89. *> \endverbatim
  90. *>
  91. *> \param[out] INFO
  92. *> \verbatim
  93. *> INFO is INTEGER
  94. *> = 0: successful exit
  95. *> < 0: if INFO = -i, the i-th argument had an illegal value
  96. *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
  97. *> has been completed, but the block diagonal matrix D is
  98. *> exactly singular, and division by zero will occur if it
  99. *> is used to solve a system of equations.
  100. *> \endverbatim
  101. *
  102. * Authors:
  103. * ========
  104. *
  105. *> \author Univ. of Tennessee
  106. *> \author Univ. of California Berkeley
  107. *> \author Univ. of Colorado Denver
  108. *> \author NAG Ltd.
  109. *
  110. *> \date November 2011
  111. *
  112. *> \ingroup doubleOTHERcomputational
  113. *
  114. *> \par Further Details:
  115. * =====================
  116. *>
  117. *> \verbatim
  118. *>
  119. *> If UPLO = 'U', then A = U*D*U**T, where
  120. *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
  121. *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  122. *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  123. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  124. *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  125. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  126. *>
  127. *> ( I v 0 ) k-s
  128. *> U(k) = ( 0 I 0 ) s
  129. *> ( 0 0 I ) n-k
  130. *> k-s s n-k
  131. *>
  132. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  133. *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  134. *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
  135. *>
  136. *> If UPLO = 'L', then A = L*D*L**T, where
  137. *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  138. *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  139. *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  140. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  141. *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  142. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  143. *>
  144. *> ( I 0 0 ) k-1
  145. *> L(k) = ( 0 I 0 ) s
  146. *> ( 0 v I ) n-k-s+1
  147. *> k-1 s n-k-s+1
  148. *>
  149. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  150. *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  151. *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  152. *> \endverbatim
  153. *
  154. *> \par Contributors:
  155. * ==================
  156. *>
  157. *> J. Lewis, Boeing Computer Services Company
  158. *>
  159. * =====================================================================
  160. SUBROUTINE DSPTRF( UPLO, N, AP, IPIV, INFO )
  161. *
  162. * -- LAPACK computational routine (version 3.4.0) --
  163. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  164. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  165. * November 2011
  166. *
  167. * .. Scalar Arguments ..
  168. CHARACTER UPLO
  169. INTEGER INFO, N
  170. * ..
  171. * .. Array Arguments ..
  172. INTEGER IPIV( * )
  173. DOUBLE PRECISION AP( * )
  174. * ..
  175. *
  176. * =====================================================================
  177. *
  178. * .. Parameters ..
  179. DOUBLE PRECISION ZERO, ONE
  180. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  181. DOUBLE PRECISION EIGHT, SEVTEN
  182. PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  183. * ..
  184. * .. Local Scalars ..
  185. LOGICAL UPPER
  186. INTEGER I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
  187. $ KSTEP, KX, NPP
  188. DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1,
  189. $ ROWMAX, T, WK, WKM1, WKP1
  190. * ..
  191. * .. External Functions ..
  192. LOGICAL LSAME
  193. INTEGER IDAMAX
  194. EXTERNAL LSAME, IDAMAX
  195. * ..
  196. * .. External Subroutines ..
  197. EXTERNAL DSCAL, DSPR, DSWAP, XERBLA
  198. * ..
  199. * .. Intrinsic Functions ..
  200. INTRINSIC ABS, MAX, SQRT
  201. * ..
  202. * .. Executable Statements ..
  203. *
  204. * Test the input parameters.
  205. *
  206. INFO = 0
  207. UPPER = LSAME( UPLO, 'U' )
  208. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  209. INFO = -1
  210. ELSE IF( N.LT.0 ) THEN
  211. INFO = -2
  212. END IF
  213. IF( INFO.NE.0 ) THEN
  214. CALL XERBLA( 'DSPTRF', -INFO )
  215. RETURN
  216. END IF
  217. *
  218. * Initialize ALPHA for use in choosing pivot block size.
  219. *
  220. ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  221. *
  222. IF( UPPER ) THEN
  223. *
  224. * Factorize A as U*D*U**T using the upper triangle of A
  225. *
  226. * K is the main loop index, decreasing from N to 1 in steps of
  227. * 1 or 2
  228. *
  229. K = N
  230. KC = ( N-1 )*N / 2 + 1
  231. 10 CONTINUE
  232. KNC = KC
  233. *
  234. * If K < 1, exit from loop
  235. *
  236. IF( K.LT.1 )
  237. $ GO TO 110
  238. KSTEP = 1
  239. *
  240. * Determine rows and columns to be interchanged and whether
  241. * a 1-by-1 or 2-by-2 pivot block will be used
  242. *
  243. ABSAKK = ABS( AP( KC+K-1 ) )
  244. *
  245. * IMAX is the row-index of the largest off-diagonal element in
  246. * column K, and COLMAX is its absolute value
  247. *
  248. IF( K.GT.1 ) THEN
  249. IMAX = IDAMAX( K-1, AP( KC ), 1 )
  250. COLMAX = ABS( AP( KC+IMAX-1 ) )
  251. ELSE
  252. COLMAX = ZERO
  253. END IF
  254. *
  255. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  256. *
  257. * Column K is zero: set INFO and continue
  258. *
  259. IF( INFO.EQ.0 )
  260. $ INFO = K
  261. KP = K
  262. ELSE
  263. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  264. *
  265. * no interchange, use 1-by-1 pivot block
  266. *
  267. KP = K
  268. ELSE
  269. *
  270. ROWMAX = ZERO
  271. JMAX = IMAX
  272. KX = IMAX*( IMAX+1 ) / 2 + IMAX
  273. DO 20 J = IMAX + 1, K
  274. IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN
  275. ROWMAX = ABS( AP( KX ) )
  276. JMAX = J
  277. END IF
  278. KX = KX + J
  279. 20 CONTINUE
  280. KPC = ( IMAX-1 )*IMAX / 2 + 1
  281. IF( IMAX.GT.1 ) THEN
  282. JMAX = IDAMAX( IMAX-1, AP( KPC ), 1 )
  283. ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-1 ) ) )
  284. END IF
  285. *
  286. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  287. *
  288. * no interchange, use 1-by-1 pivot block
  289. *
  290. KP = K
  291. ELSE IF( ABS( AP( KPC+IMAX-1 ) ).GE.ALPHA*ROWMAX ) THEN
  292. *
  293. * interchange rows and columns K and IMAX, use 1-by-1
  294. * pivot block
  295. *
  296. KP = IMAX
  297. ELSE
  298. *
  299. * interchange rows and columns K-1 and IMAX, use 2-by-2
  300. * pivot block
  301. *
  302. KP = IMAX
  303. KSTEP = 2
  304. END IF
  305. END IF
  306. *
  307. KK = K - KSTEP + 1
  308. IF( KSTEP.EQ.2 )
  309. $ KNC = KNC - K + 1
  310. IF( KP.NE.KK ) THEN
  311. *
  312. * Interchange rows and columns KK and KP in the leading
  313. * submatrix A(1:k,1:k)
  314. *
  315. CALL DSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
  316. KX = KPC + KP - 1
  317. DO 30 J = KP + 1, KK - 1
  318. KX = KX + J - 1
  319. T = AP( KNC+J-1 )
  320. AP( KNC+J-1 ) = AP( KX )
  321. AP( KX ) = T
  322. 30 CONTINUE
  323. T = AP( KNC+KK-1 )
  324. AP( KNC+KK-1 ) = AP( KPC+KP-1 )
  325. AP( KPC+KP-1 ) = T
  326. IF( KSTEP.EQ.2 ) THEN
  327. T = AP( KC+K-2 )
  328. AP( KC+K-2 ) = AP( KC+KP-1 )
  329. AP( KC+KP-1 ) = T
  330. END IF
  331. END IF
  332. *
  333. * Update the leading submatrix
  334. *
  335. IF( KSTEP.EQ.1 ) THEN
  336. *
  337. * 1-by-1 pivot block D(k): column k now holds
  338. *
  339. * W(k) = U(k)*D(k)
  340. *
  341. * where U(k) is the k-th column of U
  342. *
  343. * Perform a rank-1 update of A(1:k-1,1:k-1) as
  344. *
  345. * A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
  346. *
  347. R1 = ONE / AP( KC+K-1 )
  348. CALL DSPR( UPLO, K-1, -R1, AP( KC ), 1, AP )
  349. *
  350. * Store U(k) in column k
  351. *
  352. CALL DSCAL( K-1, R1, AP( KC ), 1 )
  353. ELSE
  354. *
  355. * 2-by-2 pivot block D(k): columns k and k-1 now hold
  356. *
  357. * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  358. *
  359. * where U(k) and U(k-1) are the k-th and (k-1)-th columns
  360. * of U
  361. *
  362. * Perform a rank-2 update of A(1:k-2,1:k-2) as
  363. *
  364. * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  365. * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
  366. *
  367. IF( K.GT.2 ) THEN
  368. *
  369. D12 = AP( K-1+( K-1 )*K / 2 )
  370. D22 = AP( K-1+( K-2 )*( K-1 ) / 2 ) / D12
  371. D11 = AP( K+( K-1 )*K / 2 ) / D12
  372. T = ONE / ( D11*D22-ONE )
  373. D12 = T / D12
  374. *
  375. DO 50 J = K - 2, 1, -1
  376. WKM1 = D12*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
  377. $ AP( J+( K-1 )*K / 2 ) )
  378. WK = D12*( D22*AP( J+( K-1 )*K / 2 )-
  379. $ AP( J+( K-2 )*( K-1 ) / 2 ) )
  380. DO 40 I = J, 1, -1
  381. AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) -
  382. $ AP( I+( K-1 )*K / 2 )*WK -
  383. $ AP( I+( K-2 )*( K-1 ) / 2 )*WKM1
  384. 40 CONTINUE
  385. AP( J+( K-1 )*K / 2 ) = WK
  386. AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
  387. 50 CONTINUE
  388. *
  389. END IF
  390. *
  391. END IF
  392. END IF
  393. *
  394. * Store details of the interchanges in IPIV
  395. *
  396. IF( KSTEP.EQ.1 ) THEN
  397. IPIV( K ) = KP
  398. ELSE
  399. IPIV( K ) = -KP
  400. IPIV( K-1 ) = -KP
  401. END IF
  402. *
  403. * Decrease K and return to the start of the main loop
  404. *
  405. K = K - KSTEP
  406. KC = KNC - K
  407. GO TO 10
  408. *
  409. ELSE
  410. *
  411. * Factorize A as L*D*L**T using the lower triangle of A
  412. *
  413. * K is the main loop index, increasing from 1 to N in steps of
  414. * 1 or 2
  415. *
  416. K = 1
  417. KC = 1
  418. NPP = N*( N+1 ) / 2
  419. 60 CONTINUE
  420. KNC = KC
  421. *
  422. * If K > N, exit from loop
  423. *
  424. IF( K.GT.N )
  425. $ GO TO 110
  426. KSTEP = 1
  427. *
  428. * Determine rows and columns to be interchanged and whether
  429. * a 1-by-1 or 2-by-2 pivot block will be used
  430. *
  431. ABSAKK = ABS( AP( KC ) )
  432. *
  433. * IMAX is the row-index of the largest off-diagonal element in
  434. * column K, and COLMAX is its absolute value
  435. *
  436. IF( K.LT.N ) THEN
  437. IMAX = K + IDAMAX( N-K, AP( KC+1 ), 1 )
  438. COLMAX = ABS( AP( KC+IMAX-K ) )
  439. ELSE
  440. COLMAX = ZERO
  441. END IF
  442. *
  443. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  444. *
  445. * Column K is zero: set INFO and continue
  446. *
  447. IF( INFO.EQ.0 )
  448. $ INFO = K
  449. KP = K
  450. ELSE
  451. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  452. *
  453. * no interchange, use 1-by-1 pivot block
  454. *
  455. KP = K
  456. ELSE
  457. *
  458. * JMAX is the column-index of the largest off-diagonal
  459. * element in row IMAX, and ROWMAX is its absolute value
  460. *
  461. ROWMAX = ZERO
  462. KX = KC + IMAX - K
  463. DO 70 J = K, IMAX - 1
  464. IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN
  465. ROWMAX = ABS( AP( KX ) )
  466. JMAX = J
  467. END IF
  468. KX = KX + N - J
  469. 70 CONTINUE
  470. KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
  471. IF( IMAX.LT.N ) THEN
  472. JMAX = IMAX + IDAMAX( N-IMAX, AP( KPC+1 ), 1 )
  473. ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-IMAX ) ) )
  474. END IF
  475. *
  476. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  477. *
  478. * no interchange, use 1-by-1 pivot block
  479. *
  480. KP = K
  481. ELSE IF( ABS( AP( KPC ) ).GE.ALPHA*ROWMAX ) THEN
  482. *
  483. * interchange rows and columns K and IMAX, use 1-by-1
  484. * pivot block
  485. *
  486. KP = IMAX
  487. ELSE
  488. *
  489. * interchange rows and columns K+1 and IMAX, use 2-by-2
  490. * pivot block
  491. *
  492. KP = IMAX
  493. KSTEP = 2
  494. END IF
  495. END IF
  496. *
  497. KK = K + KSTEP - 1
  498. IF( KSTEP.EQ.2 )
  499. $ KNC = KNC + N - K + 1
  500. IF( KP.NE.KK ) THEN
  501. *
  502. * Interchange rows and columns KK and KP in the trailing
  503. * submatrix A(k:n,k:n)
  504. *
  505. IF( KP.LT.N )
  506. $ CALL DSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
  507. $ 1 )
  508. KX = KNC + KP - KK
  509. DO 80 J = KK + 1, KP - 1
  510. KX = KX + N - J + 1
  511. T = AP( KNC+J-KK )
  512. AP( KNC+J-KK ) = AP( KX )
  513. AP( KX ) = T
  514. 80 CONTINUE
  515. T = AP( KNC )
  516. AP( KNC ) = AP( KPC )
  517. AP( KPC ) = T
  518. IF( KSTEP.EQ.2 ) THEN
  519. T = AP( KC+1 )
  520. AP( KC+1 ) = AP( KC+KP-K )
  521. AP( KC+KP-K ) = T
  522. END IF
  523. END IF
  524. *
  525. * Update the trailing submatrix
  526. *
  527. IF( KSTEP.EQ.1 ) THEN
  528. *
  529. * 1-by-1 pivot block D(k): column k now holds
  530. *
  531. * W(k) = L(k)*D(k)
  532. *
  533. * where L(k) is the k-th column of L
  534. *
  535. IF( K.LT.N ) THEN
  536. *
  537. * Perform a rank-1 update of A(k+1:n,k+1:n) as
  538. *
  539. * A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
  540. *
  541. R1 = ONE / AP( KC )
  542. CALL DSPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
  543. $ AP( KC+N-K+1 ) )
  544. *
  545. * Store L(k) in column K
  546. *
  547. CALL DSCAL( N-K, R1, AP( KC+1 ), 1 )
  548. END IF
  549. ELSE
  550. *
  551. * 2-by-2 pivot block D(k): columns K and K+1 now hold
  552. *
  553. * ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  554. *
  555. * where L(k) and L(k+1) are the k-th and (k+1)-th columns
  556. * of L
  557. *
  558. IF( K.LT.N-1 ) THEN
  559. *
  560. * Perform a rank-2 update of A(k+2:n,k+2:n) as
  561. *
  562. * A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
  563. * = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
  564. *
  565. * where L(k) and L(k+1) are the k-th and (k+1)-th
  566. * columns of L
  567. *
  568. D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 )
  569. D11 = AP( K+1+K*( 2*N-K-1 ) / 2 ) / D21
  570. D22 = AP( K+( K-1 )*( 2*N-K ) / 2 ) / D21
  571. T = ONE / ( D11*D22-ONE )
  572. D21 = T / D21
  573. *
  574. DO 100 J = K + 2, N
  575. WK = D21*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )-
  576. $ AP( J+K*( 2*N-K-1 ) / 2 ) )
  577. WKP1 = D21*( D22*AP( J+K*( 2*N-K-1 ) / 2 )-
  578. $ AP( J+( K-1 )*( 2*N-K ) / 2 ) )
  579. *
  580. DO 90 I = J, N
  581. AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )*
  582. $ ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) /
  583. $ 2 )*WK - AP( I+K*( 2*N-K-1 ) / 2 )*WKP1
  584. 90 CONTINUE
  585. *
  586. AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK
  587. AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1
  588. *
  589. 100 CONTINUE
  590. END IF
  591. END IF
  592. END IF
  593. *
  594. * Store details of the interchanges in IPIV
  595. *
  596. IF( KSTEP.EQ.1 ) THEN
  597. IPIV( K ) = KP
  598. ELSE
  599. IPIV( K ) = -KP
  600. IPIV( K+1 ) = -KP
  601. END IF
  602. *
  603. * Increase K and return to the start of the main loop
  604. *
  605. K = K + KSTEP
  606. KC = KNC + N - K + 2
  607. GO TO 60
  608. *
  609. END IF
  610. *
  611. 110 CONTINUE
  612. RETURN
  613. *
  614. * End of DSPTRF
  615. *
  616. END