You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clasr.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439
  1. *> \brief \b CLASR applies a sequence of plane rotations to a general rectangular matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLASR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clasr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clasr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clasr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER DIRECT, PIVOT, SIDE
  25. * INTEGER LDA, M, N
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL C( * ), S( * )
  29. * COMPLEX A( LDA, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CLASR applies a sequence of real plane rotations to a complex matrix
  39. *> A, from either the left or the right.
  40. *>
  41. *> When SIDE = 'L', the transformation takes the form
  42. *>
  43. *> A := P*A
  44. *>
  45. *> and when SIDE = 'R', the transformation takes the form
  46. *>
  47. *> A := A*P**T
  48. *>
  49. *> where P is an orthogonal matrix consisting of a sequence of z plane
  50. *> rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
  51. *> and P**T is the transpose of P.
  52. *>
  53. *> When DIRECT = 'F' (Forward sequence), then
  54. *>
  55. *> P = P(z-1) * ... * P(2) * P(1)
  56. *>
  57. *> and when DIRECT = 'B' (Backward sequence), then
  58. *>
  59. *> P = P(1) * P(2) * ... * P(z-1)
  60. *>
  61. *> where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
  62. *>
  63. *> R(k) = ( c(k) s(k) )
  64. *> = ( -s(k) c(k) ).
  65. *>
  66. *> When PIVOT = 'V' (Variable pivot), the rotation is performed
  67. *> for the plane (k,k+1), i.e., P(k) has the form
  68. *>
  69. *> P(k) = ( 1 )
  70. *> ( ... )
  71. *> ( 1 )
  72. *> ( c(k) s(k) )
  73. *> ( -s(k) c(k) )
  74. *> ( 1 )
  75. *> ( ... )
  76. *> ( 1 )
  77. *>
  78. *> where R(k) appears as a rank-2 modification to the identity matrix in
  79. *> rows and columns k and k+1.
  80. *>
  81. *> When PIVOT = 'T' (Top pivot), the rotation is performed for the
  82. *> plane (1,k+1), so P(k) has the form
  83. *>
  84. *> P(k) = ( c(k) s(k) )
  85. *> ( 1 )
  86. *> ( ... )
  87. *> ( 1 )
  88. *> ( -s(k) c(k) )
  89. *> ( 1 )
  90. *> ( ... )
  91. *> ( 1 )
  92. *>
  93. *> where R(k) appears in rows and columns 1 and k+1.
  94. *>
  95. *> Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
  96. *> performed for the plane (k,z), giving P(k) the form
  97. *>
  98. *> P(k) = ( 1 )
  99. *> ( ... )
  100. *> ( 1 )
  101. *> ( c(k) s(k) )
  102. *> ( 1 )
  103. *> ( ... )
  104. *> ( 1 )
  105. *> ( -s(k) c(k) )
  106. *>
  107. *> where R(k) appears in rows and columns k and z. The rotations are
  108. *> performed without ever forming P(k) explicitly.
  109. *> \endverbatim
  110. *
  111. * Arguments:
  112. * ==========
  113. *
  114. *> \param[in] SIDE
  115. *> \verbatim
  116. *> SIDE is CHARACTER*1
  117. *> Specifies whether the plane rotation matrix P is applied to
  118. *> A on the left or the right.
  119. *> = 'L': Left, compute A := P*A
  120. *> = 'R': Right, compute A:= A*P**T
  121. *> \endverbatim
  122. *>
  123. *> \param[in] PIVOT
  124. *> \verbatim
  125. *> PIVOT is CHARACTER*1
  126. *> Specifies the plane for which P(k) is a plane rotation
  127. *> matrix.
  128. *> = 'V': Variable pivot, the plane (k,k+1)
  129. *> = 'T': Top pivot, the plane (1,k+1)
  130. *> = 'B': Bottom pivot, the plane (k,z)
  131. *> \endverbatim
  132. *>
  133. *> \param[in] DIRECT
  134. *> \verbatim
  135. *> DIRECT is CHARACTER*1
  136. *> Specifies whether P is a forward or backward sequence of
  137. *> plane rotations.
  138. *> = 'F': Forward, P = P(z-1)*...*P(2)*P(1)
  139. *> = 'B': Backward, P = P(1)*P(2)*...*P(z-1)
  140. *> \endverbatim
  141. *>
  142. *> \param[in] M
  143. *> \verbatim
  144. *> M is INTEGER
  145. *> The number of rows of the matrix A. If m <= 1, an immediate
  146. *> return is effected.
  147. *> \endverbatim
  148. *>
  149. *> \param[in] N
  150. *> \verbatim
  151. *> N is INTEGER
  152. *> The number of columns of the matrix A. If n <= 1, an
  153. *> immediate return is effected.
  154. *> \endverbatim
  155. *>
  156. *> \param[in] C
  157. *> \verbatim
  158. *> C is REAL array, dimension
  159. *> (M-1) if SIDE = 'L'
  160. *> (N-1) if SIDE = 'R'
  161. *> The cosines c(k) of the plane rotations.
  162. *> \endverbatim
  163. *>
  164. *> \param[in] S
  165. *> \verbatim
  166. *> S is REAL array, dimension
  167. *> (M-1) if SIDE = 'L'
  168. *> (N-1) if SIDE = 'R'
  169. *> The sines s(k) of the plane rotations. The 2-by-2 plane
  170. *> rotation part of the matrix P(k), R(k), has the form
  171. *> R(k) = ( c(k) s(k) )
  172. *> ( -s(k) c(k) ).
  173. *> \endverbatim
  174. *>
  175. *> \param[in,out] A
  176. *> \verbatim
  177. *> A is COMPLEX array, dimension (LDA,N)
  178. *> The M-by-N matrix A. On exit, A is overwritten by P*A if
  179. *> SIDE = 'R' or by A*P**T if SIDE = 'L'.
  180. *> \endverbatim
  181. *>
  182. *> \param[in] LDA
  183. *> \verbatim
  184. *> LDA is INTEGER
  185. *> The leading dimension of the array A. LDA >= max(1,M).
  186. *> \endverbatim
  187. *
  188. * Authors:
  189. * ========
  190. *
  191. *> \author Univ. of Tennessee
  192. *> \author Univ. of California Berkeley
  193. *> \author Univ. of Colorado Denver
  194. *> \author NAG Ltd.
  195. *
  196. *> \date September 2012
  197. *
  198. *> \ingroup complexOTHERauxiliary
  199. *
  200. * =====================================================================
  201. SUBROUTINE CLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
  202. *
  203. * -- LAPACK auxiliary routine (version 3.4.2) --
  204. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  205. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  206. * September 2012
  207. *
  208. * .. Scalar Arguments ..
  209. CHARACTER DIRECT, PIVOT, SIDE
  210. INTEGER LDA, M, N
  211. * ..
  212. * .. Array Arguments ..
  213. REAL C( * ), S( * )
  214. COMPLEX A( LDA, * )
  215. * ..
  216. *
  217. * =====================================================================
  218. *
  219. * .. Parameters ..
  220. REAL ONE, ZERO
  221. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  222. * ..
  223. * .. Local Scalars ..
  224. INTEGER I, INFO, J
  225. REAL CTEMP, STEMP
  226. COMPLEX TEMP
  227. * ..
  228. * .. Intrinsic Functions ..
  229. INTRINSIC MAX
  230. * ..
  231. * .. External Functions ..
  232. LOGICAL LSAME
  233. EXTERNAL LSAME
  234. * ..
  235. * .. External Subroutines ..
  236. EXTERNAL XERBLA
  237. * ..
  238. * .. Executable Statements ..
  239. *
  240. * Test the input parameters
  241. *
  242. INFO = 0
  243. IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN
  244. INFO = 1
  245. ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT,
  246. $ 'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN
  247. INFO = 2
  248. ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) )
  249. $ THEN
  250. INFO = 3
  251. ELSE IF( M.LT.0 ) THEN
  252. INFO = 4
  253. ELSE IF( N.LT.0 ) THEN
  254. INFO = 5
  255. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  256. INFO = 9
  257. END IF
  258. IF( INFO.NE.0 ) THEN
  259. CALL XERBLA( 'CLASR ', INFO )
  260. RETURN
  261. END IF
  262. *
  263. * Quick return if possible
  264. *
  265. IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
  266. $ RETURN
  267. IF( LSAME( SIDE, 'L' ) ) THEN
  268. *
  269. * Form P * A
  270. *
  271. IF( LSAME( PIVOT, 'V' ) ) THEN
  272. IF( LSAME( DIRECT, 'F' ) ) THEN
  273. DO 20 J = 1, M - 1
  274. CTEMP = C( J )
  275. STEMP = S( J )
  276. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  277. DO 10 I = 1, N
  278. TEMP = A( J+1, I )
  279. A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
  280. A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
  281. 10 CONTINUE
  282. END IF
  283. 20 CONTINUE
  284. ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
  285. DO 40 J = M - 1, 1, -1
  286. CTEMP = C( J )
  287. STEMP = S( J )
  288. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  289. DO 30 I = 1, N
  290. TEMP = A( J+1, I )
  291. A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
  292. A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
  293. 30 CONTINUE
  294. END IF
  295. 40 CONTINUE
  296. END IF
  297. ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
  298. IF( LSAME( DIRECT, 'F' ) ) THEN
  299. DO 60 J = 2, M
  300. CTEMP = C( J-1 )
  301. STEMP = S( J-1 )
  302. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  303. DO 50 I = 1, N
  304. TEMP = A( J, I )
  305. A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
  306. A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
  307. 50 CONTINUE
  308. END IF
  309. 60 CONTINUE
  310. ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
  311. DO 80 J = M, 2, -1
  312. CTEMP = C( J-1 )
  313. STEMP = S( J-1 )
  314. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  315. DO 70 I = 1, N
  316. TEMP = A( J, I )
  317. A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
  318. A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
  319. 70 CONTINUE
  320. END IF
  321. 80 CONTINUE
  322. END IF
  323. ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
  324. IF( LSAME( DIRECT, 'F' ) ) THEN
  325. DO 100 J = 1, M - 1
  326. CTEMP = C( J )
  327. STEMP = S( J )
  328. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  329. DO 90 I = 1, N
  330. TEMP = A( J, I )
  331. A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
  332. A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
  333. 90 CONTINUE
  334. END IF
  335. 100 CONTINUE
  336. ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
  337. DO 120 J = M - 1, 1, -1
  338. CTEMP = C( J )
  339. STEMP = S( J )
  340. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  341. DO 110 I = 1, N
  342. TEMP = A( J, I )
  343. A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
  344. A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
  345. 110 CONTINUE
  346. END IF
  347. 120 CONTINUE
  348. END IF
  349. END IF
  350. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  351. *
  352. * Form A * P**T
  353. *
  354. IF( LSAME( PIVOT, 'V' ) ) THEN
  355. IF( LSAME( DIRECT, 'F' ) ) THEN
  356. DO 140 J = 1, N - 1
  357. CTEMP = C( J )
  358. STEMP = S( J )
  359. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  360. DO 130 I = 1, M
  361. TEMP = A( I, J+1 )
  362. A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
  363. A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
  364. 130 CONTINUE
  365. END IF
  366. 140 CONTINUE
  367. ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
  368. DO 160 J = N - 1, 1, -1
  369. CTEMP = C( J )
  370. STEMP = S( J )
  371. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  372. DO 150 I = 1, M
  373. TEMP = A( I, J+1 )
  374. A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
  375. A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
  376. 150 CONTINUE
  377. END IF
  378. 160 CONTINUE
  379. END IF
  380. ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
  381. IF( LSAME( DIRECT, 'F' ) ) THEN
  382. DO 180 J = 2, N
  383. CTEMP = C( J-1 )
  384. STEMP = S( J-1 )
  385. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  386. DO 170 I = 1, M
  387. TEMP = A( I, J )
  388. A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
  389. A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
  390. 170 CONTINUE
  391. END IF
  392. 180 CONTINUE
  393. ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
  394. DO 200 J = N, 2, -1
  395. CTEMP = C( J-1 )
  396. STEMP = S( J-1 )
  397. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  398. DO 190 I = 1, M
  399. TEMP = A( I, J )
  400. A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
  401. A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
  402. 190 CONTINUE
  403. END IF
  404. 200 CONTINUE
  405. END IF
  406. ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
  407. IF( LSAME( DIRECT, 'F' ) ) THEN
  408. DO 220 J = 1, N - 1
  409. CTEMP = C( J )
  410. STEMP = S( J )
  411. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  412. DO 210 I = 1, M
  413. TEMP = A( I, J )
  414. A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
  415. A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
  416. 210 CONTINUE
  417. END IF
  418. 220 CONTINUE
  419. ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
  420. DO 240 J = N - 1, 1, -1
  421. CTEMP = C( J )
  422. STEMP = S( J )
  423. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  424. DO 230 I = 1, M
  425. TEMP = A( I, J )
  426. A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
  427. A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
  428. 230 CONTINUE
  429. END IF
  430. 240 CONTINUE
  431. END IF
  432. END IF
  433. END IF
  434. *
  435. RETURN
  436. *
  437. * End of CLASR
  438. *
  439. END