You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zunmr3.f 8.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305
  1. *> \brief \b ZUNMR3 multiplies a general matrix by the unitary matrix from a RZ factorization determined by ctzrzf (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZUNMR3 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunmr3.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunmr3.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunmr3.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZUNMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
  22. * WORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER SIDE, TRANS
  26. * INTEGER INFO, K, L, LDA, LDC, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZUNMR3 overwrites the general complex m by n matrix C with
  39. *>
  40. *> Q * C if SIDE = 'L' and TRANS = 'N', or
  41. *>
  42. *> Q**H* C if SIDE = 'L' and TRANS = 'C', or
  43. *>
  44. *> C * Q if SIDE = 'R' and TRANS = 'N', or
  45. *>
  46. *> C * Q**H if SIDE = 'R' and TRANS = 'C',
  47. *>
  48. *> where Q is a complex unitary matrix defined as the product of k
  49. *> elementary reflectors
  50. *>
  51. *> Q = H(1) H(2) . . . H(k)
  52. *>
  53. *> as returned by ZTZRZF. Q is of order m if SIDE = 'L' and of order n
  54. *> if SIDE = 'R'.
  55. *> \endverbatim
  56. *
  57. * Arguments:
  58. * ==========
  59. *
  60. *> \param[in] SIDE
  61. *> \verbatim
  62. *> SIDE is CHARACTER*1
  63. *> = 'L': apply Q or Q**H from the Left
  64. *> = 'R': apply Q or Q**H from the Right
  65. *> \endverbatim
  66. *>
  67. *> \param[in] TRANS
  68. *> \verbatim
  69. *> TRANS is CHARACTER*1
  70. *> = 'N': apply Q (No transpose)
  71. *> = 'C': apply Q**H (Conjugate transpose)
  72. *> \endverbatim
  73. *>
  74. *> \param[in] M
  75. *> \verbatim
  76. *> M is INTEGER
  77. *> The number of rows of the matrix C. M >= 0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] N
  81. *> \verbatim
  82. *> N is INTEGER
  83. *> The number of columns of the matrix C. N >= 0.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] K
  87. *> \verbatim
  88. *> K is INTEGER
  89. *> The number of elementary reflectors whose product defines
  90. *> the matrix Q.
  91. *> If SIDE = 'L', M >= K >= 0;
  92. *> if SIDE = 'R', N >= K >= 0.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] L
  96. *> \verbatim
  97. *> L is INTEGER
  98. *> The number of columns of the matrix A containing
  99. *> the meaningful part of the Householder reflectors.
  100. *> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] A
  104. *> \verbatim
  105. *> A is COMPLEX*16 array, dimension
  106. *> (LDA,M) if SIDE = 'L',
  107. *> (LDA,N) if SIDE = 'R'
  108. *> The i-th row must contain the vector which defines the
  109. *> elementary reflector H(i), for i = 1,2,...,k, as returned by
  110. *> ZTZRZF in the last k rows of its array argument A.
  111. *> A is modified by the routine but restored on exit.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] LDA
  115. *> \verbatim
  116. *> LDA is INTEGER
  117. *> The leading dimension of the array A. LDA >= max(1,K).
  118. *> \endverbatim
  119. *>
  120. *> \param[in] TAU
  121. *> \verbatim
  122. *> TAU is COMPLEX*16 array, dimension (K)
  123. *> TAU(i) must contain the scalar factor of the elementary
  124. *> reflector H(i), as returned by ZTZRZF.
  125. *> \endverbatim
  126. *>
  127. *> \param[in,out] C
  128. *> \verbatim
  129. *> C is COMPLEX*16 array, dimension (LDC,N)
  130. *> On entry, the m-by-n matrix C.
  131. *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
  132. *> \endverbatim
  133. *>
  134. *> \param[in] LDC
  135. *> \verbatim
  136. *> LDC is INTEGER
  137. *> The leading dimension of the array C. LDC >= max(1,M).
  138. *> \endverbatim
  139. *>
  140. *> \param[out] WORK
  141. *> \verbatim
  142. *> WORK is COMPLEX*16 array, dimension
  143. *> (N) if SIDE = 'L',
  144. *> (M) if SIDE = 'R'
  145. *> \endverbatim
  146. *>
  147. *> \param[out] INFO
  148. *> \verbatim
  149. *> INFO is INTEGER
  150. *> = 0: successful exit
  151. *> < 0: if INFO = -i, the i-th argument had an illegal value
  152. *> \endverbatim
  153. *
  154. * Authors:
  155. * ========
  156. *
  157. *> \author Univ. of Tennessee
  158. *> \author Univ. of California Berkeley
  159. *> \author Univ. of Colorado Denver
  160. *> \author NAG Ltd.
  161. *
  162. *> \date December 2016
  163. *
  164. *> \ingroup complex16OTHERcomputational
  165. *
  166. *> \par Contributors:
  167. * ==================
  168. *>
  169. *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
  170. *
  171. *> \par Further Details:
  172. * =====================
  173. *>
  174. *> \verbatim
  175. *> \endverbatim
  176. *>
  177. * =====================================================================
  178. SUBROUTINE ZUNMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
  179. $ WORK, INFO )
  180. *
  181. * -- LAPACK computational routine (version 3.7.0) --
  182. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  183. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  184. * December 2016
  185. *
  186. * .. Scalar Arguments ..
  187. CHARACTER SIDE, TRANS
  188. INTEGER INFO, K, L, LDA, LDC, M, N
  189. * ..
  190. * .. Array Arguments ..
  191. COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
  192. * ..
  193. *
  194. * =====================================================================
  195. *
  196. * .. Local Scalars ..
  197. LOGICAL LEFT, NOTRAN
  198. INTEGER I, I1, I2, I3, IC, JA, JC, MI, NI, NQ
  199. COMPLEX*16 TAUI
  200. * ..
  201. * .. External Functions ..
  202. LOGICAL LSAME
  203. EXTERNAL LSAME
  204. * ..
  205. * .. External Subroutines ..
  206. EXTERNAL XERBLA, ZLARZ
  207. * ..
  208. * .. Intrinsic Functions ..
  209. INTRINSIC DCONJG, MAX
  210. * ..
  211. * .. Executable Statements ..
  212. *
  213. * Test the input arguments
  214. *
  215. INFO = 0
  216. LEFT = LSAME( SIDE, 'L' )
  217. NOTRAN = LSAME( TRANS, 'N' )
  218. *
  219. * NQ is the order of Q
  220. *
  221. IF( LEFT ) THEN
  222. NQ = M
  223. ELSE
  224. NQ = N
  225. END IF
  226. IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  227. INFO = -1
  228. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  229. INFO = -2
  230. ELSE IF( M.LT.0 ) THEN
  231. INFO = -3
  232. ELSE IF( N.LT.0 ) THEN
  233. INFO = -4
  234. ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
  235. INFO = -5
  236. ELSE IF( L.LT.0 .OR. ( LEFT .AND. ( L.GT.M ) ) .OR.
  237. $ ( .NOT.LEFT .AND. ( L.GT.N ) ) ) THEN
  238. INFO = -6
  239. ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
  240. INFO = -8
  241. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  242. INFO = -11
  243. END IF
  244. IF( INFO.NE.0 ) THEN
  245. CALL XERBLA( 'ZUNMR3', -INFO )
  246. RETURN
  247. END IF
  248. *
  249. * Quick return if possible
  250. *
  251. IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
  252. $ RETURN
  253. *
  254. IF( ( LEFT .AND. .NOT.NOTRAN .OR. .NOT.LEFT .AND. NOTRAN ) ) THEN
  255. I1 = 1
  256. I2 = K
  257. I3 = 1
  258. ELSE
  259. I1 = K
  260. I2 = 1
  261. I3 = -1
  262. END IF
  263. *
  264. IF( LEFT ) THEN
  265. NI = N
  266. JA = M - L + 1
  267. JC = 1
  268. ELSE
  269. MI = M
  270. JA = N - L + 1
  271. IC = 1
  272. END IF
  273. *
  274. DO 10 I = I1, I2, I3
  275. IF( LEFT ) THEN
  276. *
  277. * H(i) or H(i)**H is applied to C(i:m,1:n)
  278. *
  279. MI = M - I + 1
  280. IC = I
  281. ELSE
  282. *
  283. * H(i) or H(i)**H is applied to C(1:m,i:n)
  284. *
  285. NI = N - I + 1
  286. JC = I
  287. END IF
  288. *
  289. * Apply H(i) or H(i)**H
  290. *
  291. IF( NOTRAN ) THEN
  292. TAUI = TAU( I )
  293. ELSE
  294. TAUI = DCONJG( TAU( I ) )
  295. END IF
  296. CALL ZLARZ( SIDE, MI, NI, L, A( I, JA ), LDA, TAUI,
  297. $ C( IC, JC ), LDC, WORK )
  298. *
  299. 10 CONTINUE
  300. *
  301. RETURN
  302. *
  303. * End of ZUNMR3
  304. *
  305. END