You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsytrs_aa.f 8.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311
  1. *> \brief \b ZSYTRS_AA
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZSYTRS_AA + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrs_aa.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrs_aa.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrs_aa.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
  22. * WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER N, NRHS, LDA, LDB, LWORK, INFO
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IPIV( * )
  30. * COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZSYTRS_AA solves a system of linear equations A*X = B with a complex
  40. *> symmetric matrix A using the factorization A = U**T*T*U or
  41. *> A = L*T*L**T computed by ZSYTRF_AA.
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] UPLO
  48. *> \verbatim
  49. *> UPLO is CHARACTER*1
  50. *> Specifies whether the details of the factorization are stored
  51. *> as an upper or lower triangular matrix.
  52. *> = 'U': Upper triangular, form is A = U**T*T*U;
  53. *> = 'L': Lower triangular, form is A = L*T*L**T.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The order of the matrix A. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] NRHS
  63. *> \verbatim
  64. *> NRHS is INTEGER
  65. *> The number of right hand sides, i.e., the number of columns
  66. *> of the matrix B. NRHS >= 0.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] A
  70. *> \verbatim
  71. *> A is COMPLEX*16 array, dimension (LDA,N)
  72. *> Details of factors computed by ZSYTRF_AA.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the array A. LDA >= max(1,N).
  79. *> \endverbatim
  80. *>
  81. *> \param[in] IPIV
  82. *> \verbatim
  83. *> IPIV is INTEGER array, dimension (N)
  84. *> Details of the interchanges as computed by ZSYTRF_AA.
  85. *> \endverbatim
  86. *>
  87. *> \param[in,out] B
  88. *> \verbatim
  89. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  90. *> On entry, the right hand side matrix B.
  91. *> On exit, the solution matrix X.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LDB
  95. *> \verbatim
  96. *> LDB is INTEGER
  97. *> The leading dimension of the array B. LDB >= max(1,N).
  98. *> \endverbatim
  99. *>
  100. *> \param[out] WORK
  101. *> \verbatim
  102. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LWORK
  106. *> \verbatim
  107. *> LWORK is INTEGER
  108. *> The dimension of the array WORK. LWORK >= max(1,3*N-2).
  109. *> \endverbatim
  110. *>
  111. *> \param[out] INFO
  112. *> \verbatim
  113. *> INFO is INTEGER
  114. *> = 0: successful exit
  115. *> < 0: if INFO = -i, the i-th argument had an illegal value
  116. *> \endverbatim
  117. *
  118. * Authors:
  119. * ========
  120. *
  121. *> \author Univ. of Tennessee
  122. *> \author Univ. of California Berkeley
  123. *> \author Univ. of Colorado Denver
  124. *> \author NAG Ltd.
  125. *
  126. *> \date November 2017
  127. *
  128. *> \ingroup complex16SYcomputational
  129. *
  130. * =====================================================================
  131. SUBROUTINE ZSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
  132. $ WORK, LWORK, INFO )
  133. *
  134. * -- LAPACK computational routine (version 3.8.0) --
  135. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  136. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  137. * November 2017
  138. *
  139. IMPLICIT NONE
  140. *
  141. * .. Scalar Arguments ..
  142. CHARACTER UPLO
  143. INTEGER N, NRHS, LDA, LDB, LWORK, INFO
  144. * ..
  145. * .. Array Arguments ..
  146. INTEGER IPIV( * )
  147. COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
  148. * ..
  149. *
  150. * =====================================================================
  151. *
  152. COMPLEX*16 ONE
  153. PARAMETER ( ONE = 1.0D+0 )
  154. * ..
  155. * .. Local Scalars ..
  156. LOGICAL LQUERY, UPPER
  157. INTEGER K, KP, LWKOPT
  158. * ..
  159. * .. External Functions ..
  160. LOGICAL LSAME
  161. EXTERNAL LSAME
  162. * ..
  163. * .. External Subroutines ..
  164. EXTERNAL ZGTSV, ZSWAP, ZLACPY, ZTRSM, XERBLA
  165. * ..
  166. * .. Intrinsic Functions ..
  167. INTRINSIC MAX
  168. * ..
  169. * .. Executable Statements ..
  170. *
  171. INFO = 0
  172. UPPER = LSAME( UPLO, 'U' )
  173. LQUERY = ( LWORK.EQ.-1 )
  174. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  175. INFO = -1
  176. ELSE IF( N.LT.0 ) THEN
  177. INFO = -2
  178. ELSE IF( NRHS.LT.0 ) THEN
  179. INFO = -3
  180. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  181. INFO = -5
  182. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  183. INFO = -8
  184. ELSE IF( LWORK.LT.MAX( 1, 3*N-2 ) .AND. .NOT.LQUERY ) THEN
  185. INFO = -10
  186. END IF
  187. IF( INFO.NE.0 ) THEN
  188. CALL XERBLA( 'ZSYTRS_AA', -INFO )
  189. RETURN
  190. ELSE IF( LQUERY ) THEN
  191. LWKOPT = (3*N-2)
  192. WORK( 1 ) = LWKOPT
  193. RETURN
  194. END IF
  195. *
  196. * Quick return if possible
  197. *
  198. IF( N.EQ.0 .OR. NRHS.EQ.0 )
  199. $ RETURN
  200. *
  201. IF( UPPER ) THEN
  202. *
  203. * Solve A*X = B, where A = U**T*T*U.
  204. *
  205. * 1) Forward substitution with U**T
  206. *
  207. IF( N.GT.1 ) THEN
  208. *
  209. * Pivot, P**T * B -> B
  210. *
  211. DO K = 1, N
  212. KP = IPIV( K )
  213. IF( KP.NE.K )
  214. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  215. END DO
  216. *
  217. * Compute U**T \ B -> B [ (U**T \P**T * B) ]
  218. *
  219. CALL ZTRSM( 'L', 'U', 'T', 'U', N-1, NRHS, ONE, A( 1, 2 ),
  220. $ LDA, B( 2, 1 ), LDB)
  221. END IF
  222. *
  223. * 2) Solve with triangular matrix T
  224. *
  225. * Compute T \ B -> B [ T \ (U**T \P**T * B) ]
  226. *
  227. CALL ZLACPY( 'F', 1, N, A( 1, 1 ), LDA+1, WORK( N ), 1)
  228. IF( N.GT.1 ) THEN
  229. CALL ZLACPY( 'F', 1, N-1, A( 1, 2 ), LDA+1, WORK( 1 ), 1 )
  230. CALL ZLACPY( 'F', 1, N-1, A( 1, 2 ), LDA+1, WORK( 2*N ), 1 )
  231. END IF
  232. CALL ZGTSV( N, NRHS, WORK( 1 ), WORK( N ), WORK( 2*N ), B, LDB,
  233. $ INFO )
  234. *
  235. * 3) Backward substitution with U
  236. *
  237. IF( N.GT.1 ) THEN
  238. *
  239. * Compute U \ B -> B [ U \ (T \ (U**T \P**T * B) ) ]
  240. *
  241. CALL ZTRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ),
  242. $ LDA, B( 2, 1 ), LDB)
  243. *
  244. * Pivot, P * B -> B [ P * (U \ (T \ (U**T \P**T * B) )) ]
  245. *
  246. DO K = N, 1, -1
  247. KP = IPIV( K )
  248. IF( KP.NE.K )
  249. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  250. END DO
  251. END IF
  252. *
  253. ELSE
  254. *
  255. * Solve A*X = B, where A = L*T*L**T.
  256. *
  257. * 1) Forward substitution with L
  258. *
  259. IF( N.GT.1 ) THEN
  260. *
  261. * Pivot, P**T * B -> B
  262. *
  263. DO K = 1, N
  264. KP = IPIV( K )
  265. IF( KP.NE.K )
  266. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  267. END DO
  268. *
  269. * Compute L \ B -> B [ (L \P**T * B) ]
  270. *
  271. CALL ZTRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1 ),
  272. $ LDA, B( 2, 1 ), LDB)
  273. END IF
  274. *
  275. * 2) Solve with triangular matrix T
  276. *
  277. * Compute T \ B -> B [ T \ (L \P**T * B) ]
  278. *
  279. CALL ZLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
  280. IF( N.GT.1 ) THEN
  281. CALL ZLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 1 ), 1 )
  282. CALL ZLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 2*N ), 1 )
  283. END IF
  284. CALL ZGTSV( N, NRHS, WORK( 1 ), WORK(N), WORK( 2*N ), B, LDB,
  285. $ INFO)
  286. *
  287. * 3) Backward substitution with L**T
  288. *
  289. IF( N.GT.1 ) THEN
  290. *
  291. * Compute (L**T \ B) -> B [ L**T \ (T \ (L \P**T * B) ) ]
  292. *
  293. CALL ZTRSM( 'L', 'L', 'T', 'U', N-1, NRHS, ONE, A( 2, 1 ),
  294. $ LDA, B( 2, 1 ), LDB)
  295. *
  296. * Pivot, P * B -> B [ P * (L**T \ (T \ (L \P**T * B) )) ]
  297. *
  298. DO K = N, 1, -1
  299. KP = IPIV( K )
  300. IF( KP.NE.K )
  301. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  302. END DO
  303. END IF
  304. *
  305. END IF
  306. *
  307. RETURN
  308. *
  309. * End of ZSYTRS_AA
  310. *
  311. END