You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zpprfs.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428
  1. *> \brief \b ZPPRFS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZPPRFS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpprfs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpprfs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpprfs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR,
  22. * BERR, WORK, RWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER INFO, LDB, LDX, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
  30. * COMPLEX*16 AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
  31. * $ X( LDX, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> ZPPRFS improves the computed solution to a system of linear
  41. *> equations when the coefficient matrix is Hermitian positive definite
  42. *> and packed, and provides error bounds and backward error estimates
  43. *> for the solution.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] UPLO
  50. *> \verbatim
  51. *> UPLO is CHARACTER*1
  52. *> = 'U': Upper triangle of A is stored;
  53. *> = 'L': Lower triangle of A is stored.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The order of the matrix A. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] NRHS
  63. *> \verbatim
  64. *> NRHS is INTEGER
  65. *> The number of right hand sides, i.e., the number of columns
  66. *> of the matrices B and X. NRHS >= 0.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] AP
  70. *> \verbatim
  71. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  72. *> The upper or lower triangle of the Hermitian matrix A, packed
  73. *> columnwise in a linear array. The j-th column of A is stored
  74. *> in the array AP as follows:
  75. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  76. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] AFP
  80. *> \verbatim
  81. *> AFP is COMPLEX*16 array, dimension (N*(N+1)/2)
  82. *> The triangular factor U or L from the Cholesky factorization
  83. *> A = U**H*U or A = L*L**H, as computed by DPPTRF/ZPPTRF,
  84. *> packed columnwise in a linear array in the same format as A
  85. *> (see AP).
  86. *> \endverbatim
  87. *>
  88. *> \param[in] B
  89. *> \verbatim
  90. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  91. *> The right hand side matrix B.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LDB
  95. *> \verbatim
  96. *> LDB is INTEGER
  97. *> The leading dimension of the array B. LDB >= max(1,N).
  98. *> \endverbatim
  99. *>
  100. *> \param[in,out] X
  101. *> \verbatim
  102. *> X is COMPLEX*16 array, dimension (LDX,NRHS)
  103. *> On entry, the solution matrix X, as computed by ZPPTRS.
  104. *> On exit, the improved solution matrix X.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] LDX
  108. *> \verbatim
  109. *> LDX is INTEGER
  110. *> The leading dimension of the array X. LDX >= max(1,N).
  111. *> \endverbatim
  112. *>
  113. *> \param[out] FERR
  114. *> \verbatim
  115. *> FERR is DOUBLE PRECISION array, dimension (NRHS)
  116. *> The estimated forward error bound for each solution vector
  117. *> X(j) (the j-th column of the solution matrix X).
  118. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  119. *> is an estimated upper bound for the magnitude of the largest
  120. *> element in (X(j) - XTRUE) divided by the magnitude of the
  121. *> largest element in X(j). The estimate is as reliable as
  122. *> the estimate for RCOND, and is almost always a slight
  123. *> overestimate of the true error.
  124. *> \endverbatim
  125. *>
  126. *> \param[out] BERR
  127. *> \verbatim
  128. *> BERR is DOUBLE PRECISION array, dimension (NRHS)
  129. *> The componentwise relative backward error of each solution
  130. *> vector X(j) (i.e., the smallest relative change in
  131. *> any element of A or B that makes X(j) an exact solution).
  132. *> \endverbatim
  133. *>
  134. *> \param[out] WORK
  135. *> \verbatim
  136. *> WORK is COMPLEX*16 array, dimension (2*N)
  137. *> \endverbatim
  138. *>
  139. *> \param[out] RWORK
  140. *> \verbatim
  141. *> RWORK is DOUBLE PRECISION array, dimension (N)
  142. *> \endverbatim
  143. *>
  144. *> \param[out] INFO
  145. *> \verbatim
  146. *> INFO is INTEGER
  147. *> = 0: successful exit
  148. *> < 0: if INFO = -i, the i-th argument had an illegal value
  149. *> \endverbatim
  150. *
  151. *> \par Internal Parameters:
  152. * =========================
  153. *>
  154. *> \verbatim
  155. *> ITMAX is the maximum number of steps of iterative refinement.
  156. *> \endverbatim
  157. *
  158. * Authors:
  159. * ========
  160. *
  161. *> \author Univ. of Tennessee
  162. *> \author Univ. of California Berkeley
  163. *> \author Univ. of Colorado Denver
  164. *> \author NAG Ltd.
  165. *
  166. *> \date December 2016
  167. *
  168. *> \ingroup complex16OTHERcomputational
  169. *
  170. * =====================================================================
  171. SUBROUTINE ZPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR,
  172. $ BERR, WORK, RWORK, INFO )
  173. *
  174. * -- LAPACK computational routine (version 3.7.0) --
  175. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  176. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  177. * December 2016
  178. *
  179. * .. Scalar Arguments ..
  180. CHARACTER UPLO
  181. INTEGER INFO, LDB, LDX, N, NRHS
  182. * ..
  183. * .. Array Arguments ..
  184. DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
  185. COMPLEX*16 AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
  186. $ X( LDX, * )
  187. * ..
  188. *
  189. * ====================================================================
  190. *
  191. * .. Parameters ..
  192. INTEGER ITMAX
  193. PARAMETER ( ITMAX = 5 )
  194. DOUBLE PRECISION ZERO
  195. PARAMETER ( ZERO = 0.0D+0 )
  196. COMPLEX*16 CONE
  197. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
  198. DOUBLE PRECISION TWO
  199. PARAMETER ( TWO = 2.0D+0 )
  200. DOUBLE PRECISION THREE
  201. PARAMETER ( THREE = 3.0D+0 )
  202. * ..
  203. * .. Local Scalars ..
  204. LOGICAL UPPER
  205. INTEGER COUNT, I, IK, J, K, KASE, KK, NZ
  206. DOUBLE PRECISION EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  207. COMPLEX*16 ZDUM
  208. * ..
  209. * .. Local Arrays ..
  210. INTEGER ISAVE( 3 )
  211. * ..
  212. * .. External Subroutines ..
  213. EXTERNAL XERBLA, ZAXPY, ZCOPY, ZHPMV, ZLACN2, ZPPTRS
  214. * ..
  215. * .. Intrinsic Functions ..
  216. INTRINSIC ABS, DBLE, DIMAG, MAX
  217. * ..
  218. * .. External Functions ..
  219. LOGICAL LSAME
  220. DOUBLE PRECISION DLAMCH
  221. EXTERNAL LSAME, DLAMCH
  222. * ..
  223. * .. Statement Functions ..
  224. DOUBLE PRECISION CABS1
  225. * ..
  226. * .. Statement Function definitions ..
  227. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  228. * ..
  229. * .. Executable Statements ..
  230. *
  231. * Test the input parameters.
  232. *
  233. INFO = 0
  234. UPPER = LSAME( UPLO, 'U' )
  235. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  236. INFO = -1
  237. ELSE IF( N.LT.0 ) THEN
  238. INFO = -2
  239. ELSE IF( NRHS.LT.0 ) THEN
  240. INFO = -3
  241. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  242. INFO = -7
  243. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  244. INFO = -9
  245. END IF
  246. IF( INFO.NE.0 ) THEN
  247. CALL XERBLA( 'ZPPRFS', -INFO )
  248. RETURN
  249. END IF
  250. *
  251. * Quick return if possible
  252. *
  253. IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  254. DO 10 J = 1, NRHS
  255. FERR( J ) = ZERO
  256. BERR( J ) = ZERO
  257. 10 CONTINUE
  258. RETURN
  259. END IF
  260. *
  261. * NZ = maximum number of nonzero elements in each row of A, plus 1
  262. *
  263. NZ = N + 1
  264. EPS = DLAMCH( 'Epsilon' )
  265. SAFMIN = DLAMCH( 'Safe minimum' )
  266. SAFE1 = NZ*SAFMIN
  267. SAFE2 = SAFE1 / EPS
  268. *
  269. * Do for each right hand side
  270. *
  271. DO 140 J = 1, NRHS
  272. *
  273. COUNT = 1
  274. LSTRES = THREE
  275. 20 CONTINUE
  276. *
  277. * Loop until stopping criterion is satisfied.
  278. *
  279. * Compute residual R = B - A * X
  280. *
  281. CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
  282. CALL ZHPMV( UPLO, N, -CONE, AP, X( 1, J ), 1, CONE, WORK, 1 )
  283. *
  284. * Compute componentwise relative backward error from formula
  285. *
  286. * max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  287. *
  288. * where abs(Z) is the componentwise absolute value of the matrix
  289. * or vector Z. If the i-th component of the denominator is less
  290. * than SAFE2, then SAFE1 is added to the i-th components of the
  291. * numerator and denominator before dividing.
  292. *
  293. DO 30 I = 1, N
  294. RWORK( I ) = CABS1( B( I, J ) )
  295. 30 CONTINUE
  296. *
  297. * Compute abs(A)*abs(X) + abs(B).
  298. *
  299. KK = 1
  300. IF( UPPER ) THEN
  301. DO 50 K = 1, N
  302. S = ZERO
  303. XK = CABS1( X( K, J ) )
  304. IK = KK
  305. DO 40 I = 1, K - 1
  306. RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
  307. S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
  308. IK = IK + 1
  309. 40 CONTINUE
  310. RWORK( K ) = RWORK( K ) + ABS( DBLE( AP( KK+K-1 ) ) )*
  311. $ XK + S
  312. KK = KK + K
  313. 50 CONTINUE
  314. ELSE
  315. DO 70 K = 1, N
  316. S = ZERO
  317. XK = CABS1( X( K, J ) )
  318. RWORK( K ) = RWORK( K ) + ABS( DBLE( AP( KK ) ) )*XK
  319. IK = KK + 1
  320. DO 60 I = K + 1, N
  321. RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
  322. S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
  323. IK = IK + 1
  324. 60 CONTINUE
  325. RWORK( K ) = RWORK( K ) + S
  326. KK = KK + ( N-K+1 )
  327. 70 CONTINUE
  328. END IF
  329. S = ZERO
  330. DO 80 I = 1, N
  331. IF( RWORK( I ).GT.SAFE2 ) THEN
  332. S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  333. ELSE
  334. S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  335. $ ( RWORK( I )+SAFE1 ) )
  336. END IF
  337. 80 CONTINUE
  338. BERR( J ) = S
  339. *
  340. * Test stopping criterion. Continue iterating if
  341. * 1) The residual BERR(J) is larger than machine epsilon, and
  342. * 2) BERR(J) decreased by at least a factor of 2 during the
  343. * last iteration, and
  344. * 3) At most ITMAX iterations tried.
  345. *
  346. IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  347. $ COUNT.LE.ITMAX ) THEN
  348. *
  349. * Update solution and try again.
  350. *
  351. CALL ZPPTRS( UPLO, N, 1, AFP, WORK, N, INFO )
  352. CALL ZAXPY( N, CONE, WORK, 1, X( 1, J ), 1 )
  353. LSTRES = BERR( J )
  354. COUNT = COUNT + 1
  355. GO TO 20
  356. END IF
  357. *
  358. * Bound error from formula
  359. *
  360. * norm(X - XTRUE) / norm(X) .le. FERR =
  361. * norm( abs(inv(A))*
  362. * ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  363. *
  364. * where
  365. * norm(Z) is the magnitude of the largest component of Z
  366. * inv(A) is the inverse of A
  367. * abs(Z) is the componentwise absolute value of the matrix or
  368. * vector Z
  369. * NZ is the maximum number of nonzeros in any row of A, plus 1
  370. * EPS is machine epsilon
  371. *
  372. * The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  373. * is incremented by SAFE1 if the i-th component of
  374. * abs(A)*abs(X) + abs(B) is less than SAFE2.
  375. *
  376. * Use ZLACN2 to estimate the infinity-norm of the matrix
  377. * inv(A) * diag(W),
  378. * where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  379. *
  380. DO 90 I = 1, N
  381. IF( RWORK( I ).GT.SAFE2 ) THEN
  382. RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  383. ELSE
  384. RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  385. $ SAFE1
  386. END IF
  387. 90 CONTINUE
  388. *
  389. KASE = 0
  390. 100 CONTINUE
  391. CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  392. IF( KASE.NE.0 ) THEN
  393. IF( KASE.EQ.1 ) THEN
  394. *
  395. * Multiply by diag(W)*inv(A**H).
  396. *
  397. CALL ZPPTRS( UPLO, N, 1, AFP, WORK, N, INFO )
  398. DO 110 I = 1, N
  399. WORK( I ) = RWORK( I )*WORK( I )
  400. 110 CONTINUE
  401. ELSE IF( KASE.EQ.2 ) THEN
  402. *
  403. * Multiply by inv(A)*diag(W).
  404. *
  405. DO 120 I = 1, N
  406. WORK( I ) = RWORK( I )*WORK( I )
  407. 120 CONTINUE
  408. CALL ZPPTRS( UPLO, N, 1, AFP, WORK, N, INFO )
  409. END IF
  410. GO TO 100
  411. END IF
  412. *
  413. * Normalize error.
  414. *
  415. LSTRES = ZERO
  416. DO 130 I = 1, N
  417. LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  418. 130 CONTINUE
  419. IF( LSTRES.NE.ZERO )
  420. $ FERR( J ) = FERR( J ) / LSTRES
  421. *
  422. 140 CONTINUE
  423. *
  424. RETURN
  425. *
  426. * End of ZPPRFS
  427. *
  428. END