You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlantb.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. *> \brief \b ZLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLANTB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlantb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlantb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlantb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION ZLANTB( NORM, UPLO, DIAG, N, K, AB,
  22. * LDAB, WORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORM, UPLO
  26. * INTEGER K, LDAB, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION WORK( * )
  30. * COMPLEX*16 AB( LDAB, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZLANTB returns the value of the one norm, or the Frobenius norm, or
  40. *> the infinity norm, or the element of largest absolute value of an
  41. *> n by n triangular band matrix A, with ( k + 1 ) diagonals.
  42. *> \endverbatim
  43. *>
  44. *> \return ZLANTB
  45. *> \verbatim
  46. *>
  47. *> ZLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  48. *> (
  49. *> ( norm1(A), NORM = '1', 'O' or 'o'
  50. *> (
  51. *> ( normI(A), NORM = 'I' or 'i'
  52. *> (
  53. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  54. *>
  55. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  56. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  57. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  58. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  59. *> \endverbatim
  60. *
  61. * Arguments:
  62. * ==========
  63. *
  64. *> \param[in] NORM
  65. *> \verbatim
  66. *> NORM is CHARACTER*1
  67. *> Specifies the value to be returned in ZLANTB as described
  68. *> above.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] UPLO
  72. *> \verbatim
  73. *> UPLO is CHARACTER*1
  74. *> Specifies whether the matrix A is upper or lower triangular.
  75. *> = 'U': Upper triangular
  76. *> = 'L': Lower triangular
  77. *> \endverbatim
  78. *>
  79. *> \param[in] DIAG
  80. *> \verbatim
  81. *> DIAG is CHARACTER*1
  82. *> Specifies whether or not the matrix A is unit triangular.
  83. *> = 'N': Non-unit triangular
  84. *> = 'U': Unit triangular
  85. *> \endverbatim
  86. *>
  87. *> \param[in] N
  88. *> \verbatim
  89. *> N is INTEGER
  90. *> The order of the matrix A. N >= 0. When N = 0, ZLANTB is
  91. *> set to zero.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] K
  95. *> \verbatim
  96. *> K is INTEGER
  97. *> The number of super-diagonals of the matrix A if UPLO = 'U',
  98. *> or the number of sub-diagonals of the matrix A if UPLO = 'L'.
  99. *> K >= 0.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] AB
  103. *> \verbatim
  104. *> AB is COMPLEX*16 array, dimension (LDAB,N)
  105. *> The upper or lower triangular band matrix A, stored in the
  106. *> first k+1 rows of AB. The j-th column of A is stored
  107. *> in the j-th column of the array AB as follows:
  108. *> if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
  109. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
  110. *> Note that when DIAG = 'U', the elements of the array AB
  111. *> corresponding to the diagonal elements of the matrix A are
  112. *> not referenced, but are assumed to be one.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] LDAB
  116. *> \verbatim
  117. *> LDAB is INTEGER
  118. *> The leading dimension of the array AB. LDAB >= K+1.
  119. *> \endverbatim
  120. *>
  121. *> \param[out] WORK
  122. *> \verbatim
  123. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  124. *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
  125. *> referenced.
  126. *> \endverbatim
  127. *
  128. * Authors:
  129. * ========
  130. *
  131. *> \author Univ. of Tennessee
  132. *> \author Univ. of California Berkeley
  133. *> \author Univ. of Colorado Denver
  134. *> \author NAG Ltd.
  135. *
  136. *> \date December 2016
  137. *
  138. *> \ingroup complex16OTHERauxiliary
  139. *
  140. * =====================================================================
  141. DOUBLE PRECISION FUNCTION ZLANTB( NORM, UPLO, DIAG, N, K, AB,
  142. $ LDAB, WORK )
  143. *
  144. * -- LAPACK auxiliary routine (version 3.7.0) --
  145. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  146. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  147. * December 2016
  148. *
  149. IMPLICIT NONE
  150. * .. Scalar Arguments ..
  151. CHARACTER DIAG, NORM, UPLO
  152. INTEGER K, LDAB, N
  153. * ..
  154. * .. Array Arguments ..
  155. DOUBLE PRECISION WORK( * )
  156. COMPLEX*16 AB( LDAB, * )
  157. * ..
  158. *
  159. * =====================================================================
  160. *
  161. * .. Parameters ..
  162. DOUBLE PRECISION ONE, ZERO
  163. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  164. * ..
  165. * .. Local Scalars ..
  166. LOGICAL UDIAG
  167. INTEGER I, J, L
  168. DOUBLE PRECISION SUM, VALUE
  169. * ..
  170. * .. Local Arrays ..
  171. DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
  172. * ..
  173. * .. External Functions ..
  174. LOGICAL LSAME, DISNAN
  175. EXTERNAL LSAME, DISNAN
  176. * ..
  177. * .. External Subroutines ..
  178. EXTERNAL ZLASSQ, DCOMBSSQ
  179. * ..
  180. * .. Intrinsic Functions ..
  181. INTRINSIC ABS, MAX, MIN, SQRT
  182. * ..
  183. * .. Executable Statements ..
  184. *
  185. IF( N.EQ.0 ) THEN
  186. VALUE = ZERO
  187. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  188. *
  189. * Find max(abs(A(i,j))).
  190. *
  191. IF( LSAME( DIAG, 'U' ) ) THEN
  192. VALUE = ONE
  193. IF( LSAME( UPLO, 'U' ) ) THEN
  194. DO 20 J = 1, N
  195. DO 10 I = MAX( K+2-J, 1 ), K
  196. SUM = ABS( AB( I, J ) )
  197. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  198. 10 CONTINUE
  199. 20 CONTINUE
  200. ELSE
  201. DO 40 J = 1, N
  202. DO 30 I = 2, MIN( N+1-J, K+1 )
  203. SUM = ABS( AB( I, J ) )
  204. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  205. 30 CONTINUE
  206. 40 CONTINUE
  207. END IF
  208. ELSE
  209. VALUE = ZERO
  210. IF( LSAME( UPLO, 'U' ) ) THEN
  211. DO 60 J = 1, N
  212. DO 50 I = MAX( K+2-J, 1 ), K + 1
  213. SUM = ABS( AB( I, J ) )
  214. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  215. 50 CONTINUE
  216. 60 CONTINUE
  217. ELSE
  218. DO 80 J = 1, N
  219. DO 70 I = 1, MIN( N+1-J, K+1 )
  220. SUM = ABS( AB( I, J ) )
  221. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  222. 70 CONTINUE
  223. 80 CONTINUE
  224. END IF
  225. END IF
  226. ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  227. *
  228. * Find norm1(A).
  229. *
  230. VALUE = ZERO
  231. UDIAG = LSAME( DIAG, 'U' )
  232. IF( LSAME( UPLO, 'U' ) ) THEN
  233. DO 110 J = 1, N
  234. IF( UDIAG ) THEN
  235. SUM = ONE
  236. DO 90 I = MAX( K+2-J, 1 ), K
  237. SUM = SUM + ABS( AB( I, J ) )
  238. 90 CONTINUE
  239. ELSE
  240. SUM = ZERO
  241. DO 100 I = MAX( K+2-J, 1 ), K + 1
  242. SUM = SUM + ABS( AB( I, J ) )
  243. 100 CONTINUE
  244. END IF
  245. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  246. 110 CONTINUE
  247. ELSE
  248. DO 140 J = 1, N
  249. IF( UDIAG ) THEN
  250. SUM = ONE
  251. DO 120 I = 2, MIN( N+1-J, K+1 )
  252. SUM = SUM + ABS( AB( I, J ) )
  253. 120 CONTINUE
  254. ELSE
  255. SUM = ZERO
  256. DO 130 I = 1, MIN( N+1-J, K+1 )
  257. SUM = SUM + ABS( AB( I, J ) )
  258. 130 CONTINUE
  259. END IF
  260. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  261. 140 CONTINUE
  262. END IF
  263. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  264. *
  265. * Find normI(A).
  266. *
  267. VALUE = ZERO
  268. IF( LSAME( UPLO, 'U' ) ) THEN
  269. IF( LSAME( DIAG, 'U' ) ) THEN
  270. DO 150 I = 1, N
  271. WORK( I ) = ONE
  272. 150 CONTINUE
  273. DO 170 J = 1, N
  274. L = K + 1 - J
  275. DO 160 I = MAX( 1, J-K ), J - 1
  276. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  277. 160 CONTINUE
  278. 170 CONTINUE
  279. ELSE
  280. DO 180 I = 1, N
  281. WORK( I ) = ZERO
  282. 180 CONTINUE
  283. DO 200 J = 1, N
  284. L = K + 1 - J
  285. DO 190 I = MAX( 1, J-K ), J
  286. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  287. 190 CONTINUE
  288. 200 CONTINUE
  289. END IF
  290. ELSE
  291. IF( LSAME( DIAG, 'U' ) ) THEN
  292. DO 210 I = 1, N
  293. WORK( I ) = ONE
  294. 210 CONTINUE
  295. DO 230 J = 1, N
  296. L = 1 - J
  297. DO 220 I = J + 1, MIN( N, J+K )
  298. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  299. 220 CONTINUE
  300. 230 CONTINUE
  301. ELSE
  302. DO 240 I = 1, N
  303. WORK( I ) = ZERO
  304. 240 CONTINUE
  305. DO 260 J = 1, N
  306. L = 1 - J
  307. DO 250 I = J, MIN( N, J+K )
  308. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  309. 250 CONTINUE
  310. 260 CONTINUE
  311. END IF
  312. END IF
  313. DO 270 I = 1, N
  314. SUM = WORK( I )
  315. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  316. 270 CONTINUE
  317. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  318. *
  319. * Find normF(A).
  320. * SSQ(1) is scale
  321. * SSQ(2) is sum-of-squares
  322. * For better accuracy, sum each column separately.
  323. *
  324. IF( LSAME( UPLO, 'U' ) ) THEN
  325. IF( LSAME( DIAG, 'U' ) ) THEN
  326. SSQ( 1 ) = ONE
  327. SSQ( 2 ) = N
  328. IF( K.GT.0 ) THEN
  329. DO 280 J = 2, N
  330. COLSSQ( 1 ) = ZERO
  331. COLSSQ( 2 ) = ONE
  332. CALL ZLASSQ( MIN( J-1, K ),
  333. $ AB( MAX( K+2-J, 1 ), J ), 1,
  334. $ COLSSQ( 1 ), COLSSQ( 2 ) )
  335. CALL DCOMBSSQ( SSQ, COLSSQ )
  336. 280 CONTINUE
  337. END IF
  338. ELSE
  339. SSQ( 1 ) = ZERO
  340. SSQ( 2 ) = ONE
  341. DO 290 J = 1, N
  342. COLSSQ( 1 ) = ZERO
  343. COLSSQ( 2 ) = ONE
  344. CALL ZLASSQ( MIN( J, K+1 ), AB( MAX( K+2-J, 1 ), J ),
  345. $ 1, COLSSQ( 1 ), COLSSQ( 2 ) )
  346. CALL DCOMBSSQ( SSQ, COLSSQ )
  347. 290 CONTINUE
  348. END IF
  349. ELSE
  350. IF( LSAME( DIAG, 'U' ) ) THEN
  351. SSQ( 1 ) = ONE
  352. SSQ( 2 ) = N
  353. IF( K.GT.0 ) THEN
  354. DO 300 J = 1, N - 1
  355. COLSSQ( 1 ) = ZERO
  356. COLSSQ( 2 ) = ONE
  357. CALL ZLASSQ( MIN( N-J, K ), AB( 2, J ), 1,
  358. $ COLSSQ( 1 ), COLSSQ( 2 ) )
  359. CALL DCOMBSSQ( SSQ, COLSSQ )
  360. 300 CONTINUE
  361. END IF
  362. ELSE
  363. SSQ( 1 ) = ZERO
  364. SSQ( 2 ) = ONE
  365. DO 310 J = 1, N
  366. COLSSQ( 1 ) = ZERO
  367. COLSSQ( 2 ) = ONE
  368. CALL ZLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1,
  369. $ COLSSQ( 1 ), COLSSQ( 2 ) )
  370. CALL DCOMBSSQ( SSQ, COLSSQ )
  371. 310 CONTINUE
  372. END IF
  373. END IF
  374. VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  375. END IF
  376. *
  377. ZLANTB = VALUE
  378. RETURN
  379. *
  380. * End of ZLANTB
  381. *
  382. END