You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlansy.f 8.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265
  1. *> \brief \b ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex symmetric matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLANSY + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlansy.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlansy.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlansy.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION ZLANSY( NORM, UPLO, N, A, LDA, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER NORM, UPLO
  25. * INTEGER LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION WORK( * )
  29. * COMPLEX*16 A( LDA, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZLANSY returns the value of the one norm, or the Frobenius norm, or
  39. *> the infinity norm, or the element of largest absolute value of a
  40. *> complex symmetric matrix A.
  41. *> \endverbatim
  42. *>
  43. *> \return ZLANSY
  44. *> \verbatim
  45. *>
  46. *> ZLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  47. *> (
  48. *> ( norm1(A), NORM = '1', 'O' or 'o'
  49. *> (
  50. *> ( normI(A), NORM = 'I' or 'i'
  51. *> (
  52. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  53. *>
  54. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  55. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  56. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  57. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  58. *> \endverbatim
  59. *
  60. * Arguments:
  61. * ==========
  62. *
  63. *> \param[in] NORM
  64. *> \verbatim
  65. *> NORM is CHARACTER*1
  66. *> Specifies the value to be returned in ZLANSY as described
  67. *> above.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] UPLO
  71. *> \verbatim
  72. *> UPLO is CHARACTER*1
  73. *> Specifies whether the upper or lower triangular part of the
  74. *> symmetric matrix A is to be referenced.
  75. *> = 'U': Upper triangular part of A is referenced
  76. *> = 'L': Lower triangular part of A is referenced
  77. *> \endverbatim
  78. *>
  79. *> \param[in] N
  80. *> \verbatim
  81. *> N is INTEGER
  82. *> The order of the matrix A. N >= 0. When N = 0, ZLANSY is
  83. *> set to zero.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] A
  87. *> \verbatim
  88. *> A is COMPLEX*16 array, dimension (LDA,N)
  89. *> The symmetric matrix A. If UPLO = 'U', the leading n by n
  90. *> upper triangular part of A contains the upper triangular part
  91. *> of the matrix A, and the strictly lower triangular part of A
  92. *> is not referenced. If UPLO = 'L', the leading n by n lower
  93. *> triangular part of A contains the lower triangular part of
  94. *> the matrix A, and the strictly upper triangular part of A is
  95. *> not referenced.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] LDA
  99. *> \verbatim
  100. *> LDA is INTEGER
  101. *> The leading dimension of the array A. LDA >= max(N,1).
  102. *> \endverbatim
  103. *>
  104. *> \param[out] WORK
  105. *> \verbatim
  106. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  107. *> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  108. *> WORK is not referenced.
  109. *> \endverbatim
  110. *
  111. * Authors:
  112. * ========
  113. *
  114. *> \author Univ. of Tennessee
  115. *> \author Univ. of California Berkeley
  116. *> \author Univ. of Colorado Denver
  117. *> \author NAG Ltd.
  118. *
  119. *> \date December 2016
  120. *
  121. *> \ingroup complex16SYauxiliary
  122. *
  123. * =====================================================================
  124. DOUBLE PRECISION FUNCTION ZLANSY( NORM, UPLO, N, A, LDA, WORK )
  125. *
  126. * -- LAPACK auxiliary routine (version 3.7.0) --
  127. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  128. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  129. * December 2016
  130. *
  131. IMPLICIT NONE
  132. * .. Scalar Arguments ..
  133. CHARACTER NORM, UPLO
  134. INTEGER LDA, N
  135. * ..
  136. * .. Array Arguments ..
  137. DOUBLE PRECISION WORK( * )
  138. COMPLEX*16 A( LDA, * )
  139. * ..
  140. *
  141. * =====================================================================
  142. *
  143. * .. Parameters ..
  144. DOUBLE PRECISION ONE, ZERO
  145. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  146. * ..
  147. * .. Local Scalars ..
  148. INTEGER I, J
  149. DOUBLE PRECISION ABSA, SUM, VALUE
  150. * ..
  151. * .. Local Arrays ..
  152. DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
  153. * ..
  154. * .. External Functions ..
  155. LOGICAL LSAME, DISNAN
  156. EXTERNAL LSAME, DISNAN
  157. * ..
  158. * .. External Subroutines ..
  159. EXTERNAL ZLASSQ, DCOMBSSQ
  160. * ..
  161. * .. Intrinsic Functions ..
  162. INTRINSIC ABS, SQRT
  163. * ..
  164. * .. Executable Statements ..
  165. *
  166. IF( N.EQ.0 ) THEN
  167. VALUE = ZERO
  168. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  169. *
  170. * Find max(abs(A(i,j))).
  171. *
  172. VALUE = ZERO
  173. IF( LSAME( UPLO, 'U' ) ) THEN
  174. DO 20 J = 1, N
  175. DO 10 I = 1, J
  176. SUM = ABS( A( I, J ) )
  177. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  178. 10 CONTINUE
  179. 20 CONTINUE
  180. ELSE
  181. DO 40 J = 1, N
  182. DO 30 I = J, N
  183. SUM = ABS( A( I, J ) )
  184. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  185. 30 CONTINUE
  186. 40 CONTINUE
  187. END IF
  188. ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  189. $ ( NORM.EQ.'1' ) ) THEN
  190. *
  191. * Find normI(A) ( = norm1(A), since A is symmetric).
  192. *
  193. VALUE = ZERO
  194. IF( LSAME( UPLO, 'U' ) ) THEN
  195. DO 60 J = 1, N
  196. SUM = ZERO
  197. DO 50 I = 1, J - 1
  198. ABSA = ABS( A( I, J ) )
  199. SUM = SUM + ABSA
  200. WORK( I ) = WORK( I ) + ABSA
  201. 50 CONTINUE
  202. WORK( J ) = SUM + ABS( A( J, J ) )
  203. 60 CONTINUE
  204. DO 70 I = 1, N
  205. SUM = WORK( I )
  206. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  207. 70 CONTINUE
  208. ELSE
  209. DO 80 I = 1, N
  210. WORK( I ) = ZERO
  211. 80 CONTINUE
  212. DO 100 J = 1, N
  213. SUM = WORK( J ) + ABS( A( J, J ) )
  214. DO 90 I = J + 1, N
  215. ABSA = ABS( A( I, J ) )
  216. SUM = SUM + ABSA
  217. WORK( I ) = WORK( I ) + ABSA
  218. 90 CONTINUE
  219. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  220. 100 CONTINUE
  221. END IF
  222. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  223. *
  224. * Find normF(A).
  225. * SSQ(1) is scale
  226. * SSQ(2) is sum-of-squares
  227. * For better accuracy, sum each column separately.
  228. *
  229. SSQ( 1 ) = ZERO
  230. SSQ( 2 ) = ONE
  231. *
  232. * Sum off-diagonals
  233. *
  234. IF( LSAME( UPLO, 'U' ) ) THEN
  235. DO 110 J = 2, N
  236. COLSSQ( 1 ) = ZERO
  237. COLSSQ( 2 ) = ONE
  238. CALL ZLASSQ( J-1, A( 1, J ), 1, COLSSQ(1), COLSSQ(2) )
  239. CALL DCOMBSSQ( SSQ, COLSSQ )
  240. 110 CONTINUE
  241. ELSE
  242. DO 120 J = 1, N - 1
  243. COLSSQ( 1 ) = ZERO
  244. COLSSQ( 2 ) = ONE
  245. CALL ZLASSQ( N-J, A( J+1, J ), 1, COLSSQ(1), COLSSQ(2) )
  246. CALL DCOMBSSQ( SSQ, COLSSQ )
  247. 120 CONTINUE
  248. END IF
  249. SSQ( 2 ) = 2*SSQ( 2 )
  250. *
  251. * Sum diagonal
  252. *
  253. COLSSQ( 1 ) = ZERO
  254. COLSSQ( 2 ) = ONE
  255. CALL ZLASSQ( N, A, LDA+1, COLSSQ( 1 ), COLSSQ( 2 ) )
  256. CALL DCOMBSSQ( SSQ, COLSSQ )
  257. VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  258. END IF
  259. *
  260. ZLANSY = VALUE
  261. RETURN
  262. *
  263. * End of ZLANSY
  264. *
  265. END