You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zla_syrcond_c.f 8.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330
  1. *> \brief \b ZLA_SYRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for symmetric indefinite matrices.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLA_SYRCOND_C + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_syrcond_c.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_syrcond_c.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_syrcond_c.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION ZLA_SYRCOND_C( UPLO, N, A, LDA, AF,
  22. * LDAF, IPIV, C, CAPPLY,
  23. * INFO, WORK, RWORK )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER UPLO
  27. * LOGICAL CAPPLY
  28. * INTEGER N, LDA, LDAF, INFO
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IPIV( * )
  32. * COMPLEX*16 A( LDA, * ), AF( LDAF, * ), WORK( * )
  33. * DOUBLE PRECISION C( * ), RWORK( * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> ZLA_SYRCOND_C Computes the infinity norm condition number of
  43. *> op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] UPLO
  50. *> \verbatim
  51. *> UPLO is CHARACTER*1
  52. *> = 'U': Upper triangle of A is stored;
  53. *> = 'L': Lower triangle of A is stored.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The number of linear equations, i.e., the order of the
  60. *> matrix A. N >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] A
  64. *> \verbatim
  65. *> A is COMPLEX*16 array, dimension (LDA,N)
  66. *> On entry, the N-by-N matrix A
  67. *> \endverbatim
  68. *>
  69. *> \param[in] LDA
  70. *> \verbatim
  71. *> LDA is INTEGER
  72. *> The leading dimension of the array A. LDA >= max(1,N).
  73. *> \endverbatim
  74. *>
  75. *> \param[in] AF
  76. *> \verbatim
  77. *> AF is COMPLEX*16 array, dimension (LDAF,N)
  78. *> The block diagonal matrix D and the multipliers used to
  79. *> obtain the factor U or L as computed by ZSYTRF.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] LDAF
  83. *> \verbatim
  84. *> LDAF is INTEGER
  85. *> The leading dimension of the array AF. LDAF >= max(1,N).
  86. *> \endverbatim
  87. *>
  88. *> \param[in] IPIV
  89. *> \verbatim
  90. *> IPIV is INTEGER array, dimension (N)
  91. *> Details of the interchanges and the block structure of D
  92. *> as determined by ZSYTRF.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] C
  96. *> \verbatim
  97. *> C is DOUBLE PRECISION array, dimension (N)
  98. *> The vector C in the formula op(A) * inv(diag(C)).
  99. *> \endverbatim
  100. *>
  101. *> \param[in] CAPPLY
  102. *> \verbatim
  103. *> CAPPLY is LOGICAL
  104. *> If .TRUE. then access the vector C in the formula above.
  105. *> \endverbatim
  106. *>
  107. *> \param[out] INFO
  108. *> \verbatim
  109. *> INFO is INTEGER
  110. *> = 0: Successful exit.
  111. *> i > 0: The ith argument is invalid.
  112. *> \endverbatim
  113. *>
  114. *> \param[out] WORK
  115. *> \verbatim
  116. *> WORK is COMPLEX*16 array, dimension (2*N).
  117. *> Workspace.
  118. *> \endverbatim
  119. *>
  120. *> \param[out] RWORK
  121. *> \verbatim
  122. *> RWORK is DOUBLE PRECISION array, dimension (N).
  123. *> Workspace.
  124. *> \endverbatim
  125. *
  126. * Authors:
  127. * ========
  128. *
  129. *> \author Univ. of Tennessee
  130. *> \author Univ. of California Berkeley
  131. *> \author Univ. of Colorado Denver
  132. *> \author NAG Ltd.
  133. *
  134. *> \date December 2016
  135. *
  136. *> \ingroup complex16SYcomputational
  137. *
  138. * =====================================================================
  139. DOUBLE PRECISION FUNCTION ZLA_SYRCOND_C( UPLO, N, A, LDA, AF,
  140. $ LDAF, IPIV, C, CAPPLY,
  141. $ INFO, WORK, RWORK )
  142. *
  143. * -- LAPACK computational routine (version 3.7.0) --
  144. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  145. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146. * December 2016
  147. *
  148. * .. Scalar Arguments ..
  149. CHARACTER UPLO
  150. LOGICAL CAPPLY
  151. INTEGER N, LDA, LDAF, INFO
  152. * ..
  153. * .. Array Arguments ..
  154. INTEGER IPIV( * )
  155. COMPLEX*16 A( LDA, * ), AF( LDAF, * ), WORK( * )
  156. DOUBLE PRECISION C( * ), RWORK( * )
  157. * ..
  158. *
  159. * =====================================================================
  160. *
  161. * .. Local Scalars ..
  162. INTEGER KASE
  163. DOUBLE PRECISION AINVNM, ANORM, TMP
  164. INTEGER I, J
  165. LOGICAL UP, UPPER
  166. COMPLEX*16 ZDUM
  167. * ..
  168. * .. Local Arrays ..
  169. INTEGER ISAVE( 3 )
  170. * ..
  171. * .. External Functions ..
  172. LOGICAL LSAME
  173. EXTERNAL LSAME
  174. * ..
  175. * .. External Subroutines ..
  176. EXTERNAL ZLACN2, ZSYTRS, XERBLA
  177. * ..
  178. * .. Intrinsic Functions ..
  179. INTRINSIC ABS, MAX
  180. * ..
  181. * .. Statement Functions ..
  182. DOUBLE PRECISION CABS1
  183. * ..
  184. * .. Statement Function Definitions ..
  185. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  186. * ..
  187. * .. Executable Statements ..
  188. *
  189. ZLA_SYRCOND_C = 0.0D+0
  190. *
  191. INFO = 0
  192. UPPER = LSAME( UPLO, 'U' )
  193. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  194. INFO = -1
  195. ELSE IF( N.LT.0 ) THEN
  196. INFO = -2
  197. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  198. INFO = -4
  199. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  200. INFO = -6
  201. END IF
  202. IF( INFO.NE.0 ) THEN
  203. CALL XERBLA( 'ZLA_SYRCOND_C', -INFO )
  204. RETURN
  205. END IF
  206. UP = .FALSE.
  207. IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
  208. *
  209. * Compute norm of op(A)*op2(C).
  210. *
  211. ANORM = 0.0D+0
  212. IF ( UP ) THEN
  213. DO I = 1, N
  214. TMP = 0.0D+0
  215. IF ( CAPPLY ) THEN
  216. DO J = 1, I
  217. TMP = TMP + CABS1( A( J, I ) ) / C( J )
  218. END DO
  219. DO J = I+1, N
  220. TMP = TMP + CABS1( A( I, J ) ) / C( J )
  221. END DO
  222. ELSE
  223. DO J = 1, I
  224. TMP = TMP + CABS1( A( J, I ) )
  225. END DO
  226. DO J = I+1, N
  227. TMP = TMP + CABS1( A( I, J ) )
  228. END DO
  229. END IF
  230. RWORK( I ) = TMP
  231. ANORM = MAX( ANORM, TMP )
  232. END DO
  233. ELSE
  234. DO I = 1, N
  235. TMP = 0.0D+0
  236. IF ( CAPPLY ) THEN
  237. DO J = 1, I
  238. TMP = TMP + CABS1( A( I, J ) ) / C( J )
  239. END DO
  240. DO J = I+1, N
  241. TMP = TMP + CABS1( A( J, I ) ) / C( J )
  242. END DO
  243. ELSE
  244. DO J = 1, I
  245. TMP = TMP + CABS1( A( I, J ) )
  246. END DO
  247. DO J = I+1, N
  248. TMP = TMP + CABS1( A( J, I ) )
  249. END DO
  250. END IF
  251. RWORK( I ) = TMP
  252. ANORM = MAX( ANORM, TMP )
  253. END DO
  254. END IF
  255. *
  256. * Quick return if possible.
  257. *
  258. IF( N.EQ.0 ) THEN
  259. ZLA_SYRCOND_C = 1.0D+0
  260. RETURN
  261. ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
  262. RETURN
  263. END IF
  264. *
  265. * Estimate the norm of inv(op(A)).
  266. *
  267. AINVNM = 0.0D+0
  268. *
  269. KASE = 0
  270. 10 CONTINUE
  271. CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  272. IF( KASE.NE.0 ) THEN
  273. IF( KASE.EQ.2 ) THEN
  274. *
  275. * Multiply by R.
  276. *
  277. DO I = 1, N
  278. WORK( I ) = WORK( I ) * RWORK( I )
  279. END DO
  280. *
  281. IF ( UP ) THEN
  282. CALL ZSYTRS( 'U', N, 1, AF, LDAF, IPIV,
  283. $ WORK, N, INFO )
  284. ELSE
  285. CALL ZSYTRS( 'L', N, 1, AF, LDAF, IPIV,
  286. $ WORK, N, INFO )
  287. ENDIF
  288. *
  289. * Multiply by inv(C).
  290. *
  291. IF ( CAPPLY ) THEN
  292. DO I = 1, N
  293. WORK( I ) = WORK( I ) * C( I )
  294. END DO
  295. END IF
  296. ELSE
  297. *
  298. * Multiply by inv(C**T).
  299. *
  300. IF ( CAPPLY ) THEN
  301. DO I = 1, N
  302. WORK( I ) = WORK( I ) * C( I )
  303. END DO
  304. END IF
  305. *
  306. IF ( UP ) THEN
  307. CALL ZSYTRS( 'U', N, 1, AF, LDAF, IPIV,
  308. $ WORK, N, INFO )
  309. ELSE
  310. CALL ZSYTRS( 'L', N, 1, AF, LDAF, IPIV,
  311. $ WORK, N, INFO )
  312. END IF
  313. *
  314. * Multiply by R.
  315. *
  316. DO I = 1, N
  317. WORK( I ) = WORK( I ) * RWORK( I )
  318. END DO
  319. END IF
  320. GO TO 10
  321. END IF
  322. *
  323. * Compute the estimate of the reciprocal condition number.
  324. *
  325. IF( AINVNM .NE. 0.0D+0 )
  326. $ ZLA_SYRCOND_C = 1.0D+0 / AINVNM
  327. *
  328. RETURN
  329. *
  330. END