You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhptri.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410
  1. *> \brief \b ZHPTRI
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHPTRI + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhptri.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhptri.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhptri.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHPTRI( UPLO, N, AP, IPIV, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 AP( * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZHPTRI computes the inverse of a complex Hermitian indefinite matrix
  39. *> A in packed storage using the factorization A = U*D*U**H or
  40. *> A = L*D*L**H computed by ZHPTRF.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> Specifies whether the details of the factorization are stored
  50. *> as an upper or lower triangular matrix.
  51. *> = 'U': Upper triangular, form is A = U*D*U**H;
  52. *> = 'L': Lower triangular, form is A = L*D*L**H.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The order of the matrix A. N >= 0.
  59. *> \endverbatim
  60. *>
  61. *> \param[in,out] AP
  62. *> \verbatim
  63. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  64. *> On entry, the block diagonal matrix D and the multipliers
  65. *> used to obtain the factor U or L as computed by ZHPTRF,
  66. *> stored as a packed triangular matrix.
  67. *>
  68. *> On exit, if INFO = 0, the (Hermitian) inverse of the original
  69. *> matrix, stored as a packed triangular matrix. The j-th column
  70. *> of inv(A) is stored in the array AP as follows:
  71. *> if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
  72. *> if UPLO = 'L',
  73. *> AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] IPIV
  77. *> \verbatim
  78. *> IPIV is INTEGER array, dimension (N)
  79. *> Details of the interchanges and the block structure of D
  80. *> as determined by ZHPTRF.
  81. *> \endverbatim
  82. *>
  83. *> \param[out] WORK
  84. *> \verbatim
  85. *> WORK is COMPLEX*16 array, dimension (N)
  86. *> \endverbatim
  87. *>
  88. *> \param[out] INFO
  89. *> \verbatim
  90. *> INFO is INTEGER
  91. *> = 0: successful exit
  92. *> < 0: if INFO = -i, the i-th argument had an illegal value
  93. *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
  94. *> inverse could not be computed.
  95. *> \endverbatim
  96. *
  97. * Authors:
  98. * ========
  99. *
  100. *> \author Univ. of Tennessee
  101. *> \author Univ. of California Berkeley
  102. *> \author Univ. of Colorado Denver
  103. *> \author NAG Ltd.
  104. *
  105. *> \date December 2016
  106. *
  107. *> \ingroup complex16OTHERcomputational
  108. *
  109. * =====================================================================
  110. SUBROUTINE ZHPTRI( UPLO, N, AP, IPIV, WORK, INFO )
  111. *
  112. * -- LAPACK computational routine (version 3.7.0) --
  113. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  114. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  115. * December 2016
  116. *
  117. * .. Scalar Arguments ..
  118. CHARACTER UPLO
  119. INTEGER INFO, N
  120. * ..
  121. * .. Array Arguments ..
  122. INTEGER IPIV( * )
  123. COMPLEX*16 AP( * ), WORK( * )
  124. * ..
  125. *
  126. * =====================================================================
  127. *
  128. * .. Parameters ..
  129. DOUBLE PRECISION ONE
  130. COMPLEX*16 CONE, ZERO
  131. PARAMETER ( ONE = 1.0D+0, CONE = ( 1.0D+0, 0.0D+0 ),
  132. $ ZERO = ( 0.0D+0, 0.0D+0 ) )
  133. * ..
  134. * .. Local Scalars ..
  135. LOGICAL UPPER
  136. INTEGER J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
  137. DOUBLE PRECISION AK, AKP1, D, T
  138. COMPLEX*16 AKKP1, TEMP
  139. * ..
  140. * .. External Functions ..
  141. LOGICAL LSAME
  142. COMPLEX*16 ZDOTC
  143. EXTERNAL LSAME, ZDOTC
  144. * ..
  145. * .. External Subroutines ..
  146. EXTERNAL XERBLA, ZCOPY, ZHPMV, ZSWAP
  147. * ..
  148. * .. Intrinsic Functions ..
  149. INTRINSIC ABS, DBLE, DCONJG
  150. * ..
  151. * .. Executable Statements ..
  152. *
  153. * Test the input parameters.
  154. *
  155. INFO = 0
  156. UPPER = LSAME( UPLO, 'U' )
  157. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  158. INFO = -1
  159. ELSE IF( N.LT.0 ) THEN
  160. INFO = -2
  161. END IF
  162. IF( INFO.NE.0 ) THEN
  163. CALL XERBLA( 'ZHPTRI', -INFO )
  164. RETURN
  165. END IF
  166. *
  167. * Quick return if possible
  168. *
  169. IF( N.EQ.0 )
  170. $ RETURN
  171. *
  172. * Check that the diagonal matrix D is nonsingular.
  173. *
  174. IF( UPPER ) THEN
  175. *
  176. * Upper triangular storage: examine D from bottom to top
  177. *
  178. KP = N*( N+1 ) / 2
  179. DO 10 INFO = N, 1, -1
  180. IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  181. $ RETURN
  182. KP = KP - INFO
  183. 10 CONTINUE
  184. ELSE
  185. *
  186. * Lower triangular storage: examine D from top to bottom.
  187. *
  188. KP = 1
  189. DO 20 INFO = 1, N
  190. IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  191. $ RETURN
  192. KP = KP + N - INFO + 1
  193. 20 CONTINUE
  194. END IF
  195. INFO = 0
  196. *
  197. IF( UPPER ) THEN
  198. *
  199. * Compute inv(A) from the factorization A = U*D*U**H.
  200. *
  201. * K is the main loop index, increasing from 1 to N in steps of
  202. * 1 or 2, depending on the size of the diagonal blocks.
  203. *
  204. K = 1
  205. KC = 1
  206. 30 CONTINUE
  207. *
  208. * If K > N, exit from loop.
  209. *
  210. IF( K.GT.N )
  211. $ GO TO 50
  212. *
  213. KCNEXT = KC + K
  214. IF( IPIV( K ).GT.0 ) THEN
  215. *
  216. * 1 x 1 diagonal block
  217. *
  218. * Invert the diagonal block.
  219. *
  220. AP( KC+K-1 ) = ONE / DBLE( AP( KC+K-1 ) )
  221. *
  222. * Compute column K of the inverse.
  223. *
  224. IF( K.GT.1 ) THEN
  225. CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
  226. CALL ZHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
  227. $ AP( KC ), 1 )
  228. AP( KC+K-1 ) = AP( KC+K-1 ) -
  229. $ DBLE( ZDOTC( K-1, WORK, 1, AP( KC ), 1 ) )
  230. END IF
  231. KSTEP = 1
  232. ELSE
  233. *
  234. * 2 x 2 diagonal block
  235. *
  236. * Invert the diagonal block.
  237. *
  238. T = ABS( AP( KCNEXT+K-1 ) )
  239. AK = DBLE( AP( KC+K-1 ) ) / T
  240. AKP1 = DBLE( AP( KCNEXT+K ) ) / T
  241. AKKP1 = AP( KCNEXT+K-1 ) / T
  242. D = T*( AK*AKP1-ONE )
  243. AP( KC+K-1 ) = AKP1 / D
  244. AP( KCNEXT+K ) = AK / D
  245. AP( KCNEXT+K-1 ) = -AKKP1 / D
  246. *
  247. * Compute columns K and K+1 of the inverse.
  248. *
  249. IF( K.GT.1 ) THEN
  250. CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
  251. CALL ZHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
  252. $ AP( KC ), 1 )
  253. AP( KC+K-1 ) = AP( KC+K-1 ) -
  254. $ DBLE( ZDOTC( K-1, WORK, 1, AP( KC ), 1 ) )
  255. AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
  256. $ ZDOTC( K-1, AP( KC ), 1, AP( KCNEXT ),
  257. $ 1 )
  258. CALL ZCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
  259. CALL ZHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
  260. $ AP( KCNEXT ), 1 )
  261. AP( KCNEXT+K ) = AP( KCNEXT+K ) -
  262. $ DBLE( ZDOTC( K-1, WORK, 1, AP( KCNEXT ),
  263. $ 1 ) )
  264. END IF
  265. KSTEP = 2
  266. KCNEXT = KCNEXT + K + 1
  267. END IF
  268. *
  269. KP = ABS( IPIV( K ) )
  270. IF( KP.NE.K ) THEN
  271. *
  272. * Interchange rows and columns K and KP in the leading
  273. * submatrix A(1:k+1,1:k+1)
  274. *
  275. KPC = ( KP-1 )*KP / 2 + 1
  276. CALL ZSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
  277. KX = KPC + KP - 1
  278. DO 40 J = KP + 1, K - 1
  279. KX = KX + J - 1
  280. TEMP = DCONJG( AP( KC+J-1 ) )
  281. AP( KC+J-1 ) = DCONJG( AP( KX ) )
  282. AP( KX ) = TEMP
  283. 40 CONTINUE
  284. AP( KC+KP-1 ) = DCONJG( AP( KC+KP-1 ) )
  285. TEMP = AP( KC+K-1 )
  286. AP( KC+K-1 ) = AP( KPC+KP-1 )
  287. AP( KPC+KP-1 ) = TEMP
  288. IF( KSTEP.EQ.2 ) THEN
  289. TEMP = AP( KC+K+K-1 )
  290. AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
  291. AP( KC+K+KP-1 ) = TEMP
  292. END IF
  293. END IF
  294. *
  295. K = K + KSTEP
  296. KC = KCNEXT
  297. GO TO 30
  298. 50 CONTINUE
  299. *
  300. ELSE
  301. *
  302. * Compute inv(A) from the factorization A = L*D*L**H.
  303. *
  304. * K is the main loop index, increasing from 1 to N in steps of
  305. * 1 or 2, depending on the size of the diagonal blocks.
  306. *
  307. NPP = N*( N+1 ) / 2
  308. K = N
  309. KC = NPP
  310. 60 CONTINUE
  311. *
  312. * If K < 1, exit from loop.
  313. *
  314. IF( K.LT.1 )
  315. $ GO TO 80
  316. *
  317. KCNEXT = KC - ( N-K+2 )
  318. IF( IPIV( K ).GT.0 ) THEN
  319. *
  320. * 1 x 1 diagonal block
  321. *
  322. * Invert the diagonal block.
  323. *
  324. AP( KC ) = ONE / DBLE( AP( KC ) )
  325. *
  326. * Compute column K of the inverse.
  327. *
  328. IF( K.LT.N ) THEN
  329. CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  330. CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+N-K+1 ), WORK, 1,
  331. $ ZERO, AP( KC+1 ), 1 )
  332. AP( KC ) = AP( KC ) - DBLE( ZDOTC( N-K, WORK, 1,
  333. $ AP( KC+1 ), 1 ) )
  334. END IF
  335. KSTEP = 1
  336. ELSE
  337. *
  338. * 2 x 2 diagonal block
  339. *
  340. * Invert the diagonal block.
  341. *
  342. T = ABS( AP( KCNEXT+1 ) )
  343. AK = DBLE( AP( KCNEXT ) ) / T
  344. AKP1 = DBLE( AP( KC ) ) / T
  345. AKKP1 = AP( KCNEXT+1 ) / T
  346. D = T*( AK*AKP1-ONE )
  347. AP( KCNEXT ) = AKP1 / D
  348. AP( KC ) = AK / D
  349. AP( KCNEXT+1 ) = -AKKP1 / D
  350. *
  351. * Compute columns K-1 and K of the inverse.
  352. *
  353. IF( K.LT.N ) THEN
  354. CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  355. CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+( N-K+1 ) ), WORK,
  356. $ 1, ZERO, AP( KC+1 ), 1 )
  357. AP( KC ) = AP( KC ) - DBLE( ZDOTC( N-K, WORK, 1,
  358. $ AP( KC+1 ), 1 ) )
  359. AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
  360. $ ZDOTC( N-K, AP( KC+1 ), 1,
  361. $ AP( KCNEXT+2 ), 1 )
  362. CALL ZCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
  363. CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+( N-K+1 ) ), WORK,
  364. $ 1, ZERO, AP( KCNEXT+2 ), 1 )
  365. AP( KCNEXT ) = AP( KCNEXT ) -
  366. $ DBLE( ZDOTC( N-K, WORK, 1, AP( KCNEXT+2 ),
  367. $ 1 ) )
  368. END IF
  369. KSTEP = 2
  370. KCNEXT = KCNEXT - ( N-K+3 )
  371. END IF
  372. *
  373. KP = ABS( IPIV( K ) )
  374. IF( KP.NE.K ) THEN
  375. *
  376. * Interchange rows and columns K and KP in the trailing
  377. * submatrix A(k-1:n,k-1:n)
  378. *
  379. KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
  380. IF( KP.LT.N )
  381. $ CALL ZSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
  382. KX = KC + KP - K
  383. DO 70 J = K + 1, KP - 1
  384. KX = KX + N - J + 1
  385. TEMP = DCONJG( AP( KC+J-K ) )
  386. AP( KC+J-K ) = DCONJG( AP( KX ) )
  387. AP( KX ) = TEMP
  388. 70 CONTINUE
  389. AP( KC+KP-K ) = DCONJG( AP( KC+KP-K ) )
  390. TEMP = AP( KC )
  391. AP( KC ) = AP( KPC )
  392. AP( KPC ) = TEMP
  393. IF( KSTEP.EQ.2 ) THEN
  394. TEMP = AP( KC-N+K-1 )
  395. AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
  396. AP( KC-N+KP-1 ) = TEMP
  397. END IF
  398. END IF
  399. *
  400. K = K - KSTEP
  401. KC = KCNEXT
  402. GO TO 60
  403. 80 CONTINUE
  404. END IF
  405. *
  406. RETURN
  407. *
  408. * End of ZHPTRI
  409. *
  410. END