|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516 |
- *> \brief \b ZHETRI_ROOK computes the inverse of HE matrix using the factorization obtained with the bounded Bunch-Kaufman ("rook") diagonal pivoting method.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZHETRI_ROOK + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetri_rook.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetri_rook.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetri_rook.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZHETRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX*16 A( LDA, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZHETRI_ROOK computes the inverse of a complex Hermitian indefinite matrix
- *> A using the factorization A = U*D*U**H or A = L*D*L**H computed by
- *> ZHETRF_ROOK.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the details of the factorization are stored
- *> as an upper or lower triangular matrix.
- *> = 'U': Upper triangular, form is A = U*D*U**H;
- *> = 'L': Lower triangular, form is A = L*D*L**H.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the block diagonal matrix D and the multipliers
- *> used to obtain the factor U or L as computed by ZHETRF_ROOK.
- *>
- *> On exit, if INFO = 0, the (Hermitian) inverse of the original
- *> matrix. If UPLO = 'U', the upper triangular part of the
- *> inverse is formed and the part of A below the diagonal is not
- *> referenced; if UPLO = 'L' the lower triangular part of the
- *> inverse is formed and the part of A above the diagonal is
- *> not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges and the block structure of D
- *> as determined by ZHETRF_ROOK.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
- *> inverse could not be computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2013
- *
- *> \ingroup complex16HEcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> \verbatim
- *>
- *> November 2013, Igor Kozachenko,
- *> Computer Science Division,
- *> University of California, Berkeley
- *>
- *> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
- *> School of Mathematics,
- *> University of Manchester
- *> \endverbatim
- *
- * =====================================================================
- SUBROUTINE ZHETRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO )
- *
- * -- LAPACK computational routine (version 3.5.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2013
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX*16 A( LDA, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE
- COMPLEX*16 CONE, CZERO
- PARAMETER ( ONE = 1.0D+0, CONE = ( 1.0D+0, 0.0D+0 ),
- $ CZERO = ( 0.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER J, K, KP, KSTEP
- DOUBLE PRECISION AK, AKP1, D, T
- COMPLEX*16 AKKP1, TEMP
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- COMPLEX*16 ZDOTC
- EXTERNAL LSAME, ZDOTC
- * ..
- * .. External Subroutines ..
- EXTERNAL ZCOPY, ZHEMV, ZSWAP, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DCONJG, MAX, DBLE
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZHETRI_ROOK', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Check that the diagonal matrix D is nonsingular.
- *
- IF( UPPER ) THEN
- *
- * Upper triangular storage: examine D from bottom to top
- *
- DO 10 INFO = N, 1, -1
- IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
- $ RETURN
- 10 CONTINUE
- ELSE
- *
- * Lower triangular storage: examine D from top to bottom.
- *
- DO 20 INFO = 1, N
- IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
- $ RETURN
- 20 CONTINUE
- END IF
- INFO = 0
- *
- IF( UPPER ) THEN
- *
- * Compute inv(A) from the factorization A = U*D*U**H.
- *
- * K is the main loop index, increasing from 1 to N in steps of
- * 1 or 2, depending on the size of the diagonal blocks.
- *
- K = 1
- 30 CONTINUE
- *
- * If K > N, exit from loop.
- *
- IF( K.GT.N )
- $ GO TO 70
- *
- IF( IPIV( K ).GT.0 ) THEN
- *
- * 1 x 1 diagonal block
- *
- * Invert the diagonal block.
- *
- A( K, K ) = ONE / DBLE( A( K, K ) )
- *
- * Compute column K of the inverse.
- *
- IF( K.GT.1 ) THEN
- CALL ZCOPY( K-1, A( 1, K ), 1, WORK, 1 )
- CALL ZHEMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, CZERO,
- $ A( 1, K ), 1 )
- A( K, K ) = A( K, K ) - DBLE( ZDOTC( K-1, WORK, 1, A( 1,
- $ K ), 1 ) )
- END IF
- KSTEP = 1
- ELSE
- *
- * 2 x 2 diagonal block
- *
- * Invert the diagonal block.
- *
- T = ABS( A( K, K+1 ) )
- AK = DBLE( A( K, K ) ) / T
- AKP1 = DBLE( A( K+1, K+1 ) ) / T
- AKKP1 = A( K, K+1 ) / T
- D = T*( AK*AKP1-ONE )
- A( K, K ) = AKP1 / D
- A( K+1, K+1 ) = AK / D
- A( K, K+1 ) = -AKKP1 / D
- *
- * Compute columns K and K+1 of the inverse.
- *
- IF( K.GT.1 ) THEN
- CALL ZCOPY( K-1, A( 1, K ), 1, WORK, 1 )
- CALL ZHEMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, CZERO,
- $ A( 1, K ), 1 )
- A( K, K ) = A( K, K ) - DBLE( ZDOTC( K-1, WORK, 1, A( 1,
- $ K ), 1 ) )
- A( K, K+1 ) = A( K, K+1 ) -
- $ ZDOTC( K-1, A( 1, K ), 1, A( 1, K+1 ), 1 )
- CALL ZCOPY( K-1, A( 1, K+1 ), 1, WORK, 1 )
- CALL ZHEMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, CZERO,
- $ A( 1, K+1 ), 1 )
- A( K+1, K+1 ) = A( K+1, K+1 ) -
- $ DBLE( ZDOTC( K-1, WORK, 1, A( 1, K+1 ),
- $ 1 ) )
- END IF
- KSTEP = 2
- END IF
- *
- IF( KSTEP.EQ.1 ) THEN
- *
- * Interchange rows and columns K and IPIV(K) in the leading
- * submatrix A(1:k,1:k)
- *
- KP = IPIV( K )
- IF( KP.NE.K ) THEN
- *
- IF( KP.GT.1 )
- $ CALL ZSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
- *
- DO 40 J = KP + 1, K - 1
- TEMP = DCONJG( A( J, K ) )
- A( J, K ) = DCONJG( A( KP, J ) )
- A( KP, J ) = TEMP
- 40 CONTINUE
- *
- A( KP, K ) = DCONJG( A( KP, K ) )
- *
- TEMP = A( K, K )
- A( K, K ) = A( KP, KP )
- A( KP, KP ) = TEMP
- END IF
- ELSE
- *
- * Interchange rows and columns K and K+1 with -IPIV(K) and
- * -IPIV(K+1) in the leading submatrix A(k+1:n,k+1:n)
- *
- * (1) Interchange rows and columns K and -IPIV(K)
- *
- KP = -IPIV( K )
- IF( KP.NE.K ) THEN
- *
- IF( KP.GT.1 )
- $ CALL ZSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
- *
- DO 50 J = KP + 1, K - 1
- TEMP = DCONJG( A( J, K ) )
- A( J, K ) = DCONJG( A( KP, J ) )
- A( KP, J ) = TEMP
- 50 CONTINUE
- *
- A( KP, K ) = DCONJG( A( KP, K ) )
- *
- TEMP = A( K, K )
- A( K, K ) = A( KP, KP )
- A( KP, KP ) = TEMP
- *
- TEMP = A( K, K+1 )
- A( K, K+1 ) = A( KP, K+1 )
- A( KP, K+1 ) = TEMP
- END IF
- *
- * (2) Interchange rows and columns K+1 and -IPIV(K+1)
- *
- K = K + 1
- KP = -IPIV( K )
- IF( KP.NE.K ) THEN
- *
- IF( KP.GT.1 )
- $ CALL ZSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
- *
- DO 60 J = KP + 1, K - 1
- TEMP = DCONJG( A( J, K ) )
- A( J, K ) = DCONJG( A( KP, J ) )
- A( KP, J ) = TEMP
- 60 CONTINUE
- *
- A( KP, K ) = DCONJG( A( KP, K ) )
- *
- TEMP = A( K, K )
- A( K, K ) = A( KP, KP )
- A( KP, KP ) = TEMP
- END IF
- END IF
- *
- K = K + 1
- GO TO 30
- 70 CONTINUE
- *
- ELSE
- *
- * Compute inv(A) from the factorization A = L*D*L**H.
- *
- * K is the main loop index, decreasing from N to 1 in steps of
- * 1 or 2, depending on the size of the diagonal blocks.
- *
- K = N
- 80 CONTINUE
- *
- * If K < 1, exit from loop.
- *
- IF( K.LT.1 )
- $ GO TO 120
- *
- IF( IPIV( K ).GT.0 ) THEN
- *
- * 1 x 1 diagonal block
- *
- * Invert the diagonal block.
- *
- A( K, K ) = ONE / DBLE( A( K, K ) )
- *
- * Compute column K of the inverse.
- *
- IF( K.LT.N ) THEN
- CALL ZCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
- CALL ZHEMV( UPLO, N-K, -CONE, A( K+1, K+1 ), LDA, WORK,
- $ 1, CZERO, A( K+1, K ), 1 )
- A( K, K ) = A( K, K ) - DBLE( ZDOTC( N-K, WORK, 1,
- $ A( K+1, K ), 1 ) )
- END IF
- KSTEP = 1
- ELSE
- *
- * 2 x 2 diagonal block
- *
- * Invert the diagonal block.
- *
- T = ABS( A( K, K-1 ) )
- AK = DBLE( A( K-1, K-1 ) ) / T
- AKP1 = DBLE( A( K, K ) ) / T
- AKKP1 = A( K, K-1 ) / T
- D = T*( AK*AKP1-ONE )
- A( K-1, K-1 ) = AKP1 / D
- A( K, K ) = AK / D
- A( K, K-1 ) = -AKKP1 / D
- *
- * Compute columns K-1 and K of the inverse.
- *
- IF( K.LT.N ) THEN
- CALL ZCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
- CALL ZHEMV( UPLO, N-K, -CONE, A( K+1, K+1 ), LDA, WORK,
- $ 1, CZERO, A( K+1, K ), 1 )
- A( K, K ) = A( K, K ) - DBLE( ZDOTC( N-K, WORK, 1,
- $ A( K+1, K ), 1 ) )
- A( K, K-1 ) = A( K, K-1 ) -
- $ ZDOTC( N-K, A( K+1, K ), 1, A( K+1, K-1 ),
- $ 1 )
- CALL ZCOPY( N-K, A( K+1, K-1 ), 1, WORK, 1 )
- CALL ZHEMV( UPLO, N-K, -CONE, A( K+1, K+1 ), LDA, WORK,
- $ 1, CZERO, A( K+1, K-1 ), 1 )
- A( K-1, K-1 ) = A( K-1, K-1 ) -
- $ DBLE( ZDOTC( N-K, WORK, 1, A( K+1, K-1 ),
- $ 1 ) )
- END IF
- KSTEP = 2
- END IF
- *
- IF( KSTEP.EQ.1 ) THEN
- *
- * Interchange rows and columns K and IPIV(K) in the trailing
- * submatrix A(k:n,k:n)
- *
- KP = IPIV( K )
- IF( KP.NE.K ) THEN
- *
- IF( KP.LT.N )
- $ CALL ZSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
- *
- DO 90 J = K + 1, KP - 1
- TEMP = DCONJG( A( J, K ) )
- A( J, K ) = DCONJG( A( KP, J ) )
- A( KP, J ) = TEMP
- 90 CONTINUE
- *
- A( KP, K ) = DCONJG( A( KP, K ) )
- *
- TEMP = A( K, K )
- A( K, K ) = A( KP, KP )
- A( KP, KP ) = TEMP
- END IF
- ELSE
- *
- * Interchange rows and columns K and K-1 with -IPIV(K) and
- * -IPIV(K-1) in the trailing submatrix A(k-1:n,k-1:n)
- *
- * (1) Interchange rows and columns K and -IPIV(K)
- *
- KP = -IPIV( K )
- IF( KP.NE.K ) THEN
- *
- IF( KP.LT.N )
- $ CALL ZSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
- *
- DO 100 J = K + 1, KP - 1
- TEMP = DCONJG( A( J, K ) )
- A( J, K ) = DCONJG( A( KP, J ) )
- A( KP, J ) = TEMP
- 100 CONTINUE
- *
- A( KP, K ) = DCONJG( A( KP, K ) )
- *
- TEMP = A( K, K )
- A( K, K ) = A( KP, KP )
- A( KP, KP ) = TEMP
- *
- TEMP = A( K, K-1 )
- A( K, K-1 ) = A( KP, K-1 )
- A( KP, K-1 ) = TEMP
- END IF
- *
- * (2) Interchange rows and columns K-1 and -IPIV(K-1)
- *
- K = K - 1
- KP = -IPIV( K )
- IF( KP.NE.K ) THEN
- *
- IF( KP.LT.N )
- $ CALL ZSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
- *
- DO 110 J = K + 1, KP - 1
- TEMP = DCONJG( A( J, K ) )
- A( J, K ) = DCONJG( A( KP, J ) )
- A( KP, J ) = TEMP
- 110 CONTINUE
- *
- A( KP, K ) = DCONJG( A( KP, K ) )
- *
- TEMP = A( K, K )
- A( K, K ) = A( KP, KP )
- A( KP, KP ) = TEMP
- END IF
- END IF
- *
- K = K - 1
- GO TO 80
- 120 CONTINUE
- END IF
- *
- RETURN
- *
- * End of ZHETRI_ROOK
- *
- END
|