You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhegs2.f 9.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297
  1. *> \brief \b ZHEGS2 reduces a Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from cpotrf (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHEGS2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegs2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegs2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegs2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, ITYPE, LDA, LDB, N
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX*16 A( LDA, * ), B( LDB, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> ZHEGS2 reduces a complex Hermitian-definite generalized
  38. *> eigenproblem to standard form.
  39. *>
  40. *> If ITYPE = 1, the problem is A*x = lambda*B*x,
  41. *> and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
  42. *>
  43. *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
  44. *> B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H *A*L.
  45. *>
  46. *> B must have been previously factorized as U**H *U or L*L**H by ZPOTRF.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] ITYPE
  53. *> \verbatim
  54. *> ITYPE is INTEGER
  55. *> = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
  56. *> = 2 or 3: compute U*A*U**H or L**H *A*L.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] UPLO
  60. *> \verbatim
  61. *> UPLO is CHARACTER*1
  62. *> Specifies whether the upper or lower triangular part of the
  63. *> Hermitian matrix A is stored, and how B has been factorized.
  64. *> = 'U': Upper triangular
  65. *> = 'L': Lower triangular
  66. *> \endverbatim
  67. *>
  68. *> \param[in] N
  69. *> \verbatim
  70. *> N is INTEGER
  71. *> The order of the matrices A and B. N >= 0.
  72. *> \endverbatim
  73. *>
  74. *> \param[in,out] A
  75. *> \verbatim
  76. *> A is COMPLEX*16 array, dimension (LDA,N)
  77. *> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
  78. *> n by n upper triangular part of A contains the upper
  79. *> triangular part of the matrix A, and the strictly lower
  80. *> triangular part of A is not referenced. If UPLO = 'L', the
  81. *> leading n by n lower triangular part of A contains the lower
  82. *> triangular part of the matrix A, and the strictly upper
  83. *> triangular part of A is not referenced.
  84. *>
  85. *> On exit, if INFO = 0, the transformed matrix, stored in the
  86. *> same format as A.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDA
  90. *> \verbatim
  91. *> LDA is INTEGER
  92. *> The leading dimension of the array A. LDA >= max(1,N).
  93. *> \endverbatim
  94. *>
  95. *> \param[in,out] B
  96. *> \verbatim
  97. *> B is COMPLEX*16 array, dimension (LDB,N)
  98. *> The triangular factor from the Cholesky factorization of B,
  99. *> as returned by ZPOTRF.
  100. *> B is modified by the routine but restored on exit.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] LDB
  104. *> \verbatim
  105. *> LDB is INTEGER
  106. *> The leading dimension of the array B. LDB >= max(1,N).
  107. *> \endverbatim
  108. *>
  109. *> \param[out] INFO
  110. *> \verbatim
  111. *> INFO is INTEGER
  112. *> = 0: successful exit.
  113. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  114. *> \endverbatim
  115. *
  116. * Authors:
  117. * ========
  118. *
  119. *> \author Univ. of Tennessee
  120. *> \author Univ. of California Berkeley
  121. *> \author Univ. of Colorado Denver
  122. *> \author NAG Ltd.
  123. *
  124. *> \date December 2016
  125. *
  126. *> \ingroup complex16HEcomputational
  127. *
  128. * =====================================================================
  129. SUBROUTINE ZHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  130. *
  131. * -- LAPACK computational routine (version 3.7.0) --
  132. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  133. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  134. * December 2016
  135. *
  136. * .. Scalar Arguments ..
  137. CHARACTER UPLO
  138. INTEGER INFO, ITYPE, LDA, LDB, N
  139. * ..
  140. * .. Array Arguments ..
  141. COMPLEX*16 A( LDA, * ), B( LDB, * )
  142. * ..
  143. *
  144. * =====================================================================
  145. *
  146. * .. Parameters ..
  147. DOUBLE PRECISION ONE, HALF
  148. PARAMETER ( ONE = 1.0D+0, HALF = 0.5D+0 )
  149. COMPLEX*16 CONE
  150. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
  151. * ..
  152. * .. Local Scalars ..
  153. LOGICAL UPPER
  154. INTEGER K
  155. DOUBLE PRECISION AKK, BKK
  156. COMPLEX*16 CT
  157. * ..
  158. * .. External Subroutines ..
  159. EXTERNAL XERBLA, ZAXPY, ZDSCAL, ZHER2, ZLACGV, ZTRMV,
  160. $ ZTRSV
  161. * ..
  162. * .. Intrinsic Functions ..
  163. INTRINSIC MAX
  164. * ..
  165. * .. External Functions ..
  166. LOGICAL LSAME
  167. EXTERNAL LSAME
  168. * ..
  169. * .. Executable Statements ..
  170. *
  171. * Test the input parameters.
  172. *
  173. INFO = 0
  174. UPPER = LSAME( UPLO, 'U' )
  175. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  176. INFO = -1
  177. ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  178. INFO = -2
  179. ELSE IF( N.LT.0 ) THEN
  180. INFO = -3
  181. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  182. INFO = -5
  183. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  184. INFO = -7
  185. END IF
  186. IF( INFO.NE.0 ) THEN
  187. CALL XERBLA( 'ZHEGS2', -INFO )
  188. RETURN
  189. END IF
  190. *
  191. IF( ITYPE.EQ.1 ) THEN
  192. IF( UPPER ) THEN
  193. *
  194. * Compute inv(U**H)*A*inv(U)
  195. *
  196. DO 10 K = 1, N
  197. *
  198. * Update the upper triangle of A(k:n,k:n)
  199. *
  200. AKK = A( K, K )
  201. BKK = B( K, K )
  202. AKK = AKK / BKK**2
  203. A( K, K ) = AKK
  204. IF( K.LT.N ) THEN
  205. CALL ZDSCAL( N-K, ONE / BKK, A( K, K+1 ), LDA )
  206. CT = -HALF*AKK
  207. CALL ZLACGV( N-K, A( K, K+1 ), LDA )
  208. CALL ZLACGV( N-K, B( K, K+1 ), LDB )
  209. CALL ZAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
  210. $ LDA )
  211. CALL ZHER2( UPLO, N-K, -CONE, A( K, K+1 ), LDA,
  212. $ B( K, K+1 ), LDB, A( K+1, K+1 ), LDA )
  213. CALL ZAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
  214. $ LDA )
  215. CALL ZLACGV( N-K, B( K, K+1 ), LDB )
  216. CALL ZTRSV( UPLO, 'Conjugate transpose', 'Non-unit',
  217. $ N-K, B( K+1, K+1 ), LDB, A( K, K+1 ),
  218. $ LDA )
  219. CALL ZLACGV( N-K, A( K, K+1 ), LDA )
  220. END IF
  221. 10 CONTINUE
  222. ELSE
  223. *
  224. * Compute inv(L)*A*inv(L**H)
  225. *
  226. DO 20 K = 1, N
  227. *
  228. * Update the lower triangle of A(k:n,k:n)
  229. *
  230. AKK = A( K, K )
  231. BKK = B( K, K )
  232. AKK = AKK / BKK**2
  233. A( K, K ) = AKK
  234. IF( K.LT.N ) THEN
  235. CALL ZDSCAL( N-K, ONE / BKK, A( K+1, K ), 1 )
  236. CT = -HALF*AKK
  237. CALL ZAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
  238. CALL ZHER2( UPLO, N-K, -CONE, A( K+1, K ), 1,
  239. $ B( K+1, K ), 1, A( K+1, K+1 ), LDA )
  240. CALL ZAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
  241. CALL ZTRSV( UPLO, 'No transpose', 'Non-unit', N-K,
  242. $ B( K+1, K+1 ), LDB, A( K+1, K ), 1 )
  243. END IF
  244. 20 CONTINUE
  245. END IF
  246. ELSE
  247. IF( UPPER ) THEN
  248. *
  249. * Compute U*A*U**H
  250. *
  251. DO 30 K = 1, N
  252. *
  253. * Update the upper triangle of A(1:k,1:k)
  254. *
  255. AKK = A( K, K )
  256. BKK = B( K, K )
  257. CALL ZTRMV( UPLO, 'No transpose', 'Non-unit', K-1, B,
  258. $ LDB, A( 1, K ), 1 )
  259. CT = HALF*AKK
  260. CALL ZAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
  261. CALL ZHER2( UPLO, K-1, CONE, A( 1, K ), 1, B( 1, K ), 1,
  262. $ A, LDA )
  263. CALL ZAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
  264. CALL ZDSCAL( K-1, BKK, A( 1, K ), 1 )
  265. A( K, K ) = AKK*BKK**2
  266. 30 CONTINUE
  267. ELSE
  268. *
  269. * Compute L**H *A*L
  270. *
  271. DO 40 K = 1, N
  272. *
  273. * Update the lower triangle of A(1:k,1:k)
  274. *
  275. AKK = A( K, K )
  276. BKK = B( K, K )
  277. CALL ZLACGV( K-1, A( K, 1 ), LDA )
  278. CALL ZTRMV( UPLO, 'Conjugate transpose', 'Non-unit', K-1,
  279. $ B, LDB, A( K, 1 ), LDA )
  280. CT = HALF*AKK
  281. CALL ZLACGV( K-1, B( K, 1 ), LDB )
  282. CALL ZAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
  283. CALL ZHER2( UPLO, K-1, CONE, A( K, 1 ), LDA, B( K, 1 ),
  284. $ LDB, A, LDA )
  285. CALL ZAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
  286. CALL ZLACGV( K-1, B( K, 1 ), LDB )
  287. CALL ZDSCAL( K-1, BKK, A( K, 1 ), LDA )
  288. CALL ZLACGV( K-1, A( K, 1 ), LDA )
  289. A( K, K ) = AKK*BKK**2
  290. 40 CONTINUE
  291. END IF
  292. END IF
  293. RETURN
  294. *
  295. * End of ZHEGS2
  296. *
  297. END