|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287 |
- *> \brief \b ZHBGV
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZHBGV + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbgv.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbgv.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbgv.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZHBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
- * LDZ, WORK, RWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, UPLO
- * INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION RWORK( * ), W( * )
- * COMPLEX*16 AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
- * $ Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZHBGV computes all the eigenvalues, and optionally, the eigenvectors
- *> of a complex generalized Hermitian-definite banded eigenproblem, of
- *> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
- *> and banded, and B is also positive definite.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangles of A and B are stored;
- *> = 'L': Lower triangles of A and B are stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KA
- *> \verbatim
- *> KA is INTEGER
- *> The number of superdiagonals of the matrix A if UPLO = 'U',
- *> or the number of subdiagonals if UPLO = 'L'. KA >= 0.
- *> \endverbatim
- *>
- *> \param[in] KB
- *> \verbatim
- *> KB is INTEGER
- *> The number of superdiagonals of the matrix B if UPLO = 'U',
- *> or the number of subdiagonals if UPLO = 'L'. KB >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AB
- *> \verbatim
- *> AB is COMPLEX*16 array, dimension (LDAB, N)
- *> On entry, the upper or lower triangle of the Hermitian band
- *> matrix A, stored in the first ka+1 rows of the array. The
- *> j-th column of A is stored in the j-th column of the array AB
- *> as follows:
- *> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
- *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
- *>
- *> On exit, the contents of AB are destroyed.
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KA+1.
- *> \endverbatim
- *>
- *> \param[in,out] BB
- *> \verbatim
- *> BB is COMPLEX*16 array, dimension (LDBB, N)
- *> On entry, the upper or lower triangle of the Hermitian band
- *> matrix B, stored in the first kb+1 rows of the array. The
- *> j-th column of B is stored in the j-th column of the array BB
- *> as follows:
- *> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
- *> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
- *>
- *> On exit, the factor S from the split Cholesky factorization
- *> B = S**H*S, as returned by ZPBSTF.
- *> \endverbatim
- *>
- *> \param[in] LDBB
- *> \verbatim
- *> LDBB is INTEGER
- *> The leading dimension of the array BB. LDBB >= KB+1.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is DOUBLE PRECISION array, dimension (N)
- *> If INFO = 0, the eigenvalues in ascending order.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is COMPLEX*16 array, dimension (LDZ, N)
- *> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
- *> eigenvectors, with the i-th column of Z holding the
- *> eigenvector associated with W(i). The eigenvectors are
- *> normalized so that Z**H*B*Z = I.
- *> If JOBZ = 'N', then Z is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1, and if
- *> JOBZ = 'V', LDZ >= N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (3*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, and i is:
- *> <= N: the algorithm failed to converge:
- *> i off-diagonal elements of an intermediate
- *> tridiagonal form did not converge to zero;
- *> > N: if INFO = N + i, for 1 <= i <= N, then ZPBSTF
- *> returned INFO = i: B is not positive definite.
- *> The factorization of B could not be completed and
- *> no eigenvalues or eigenvectors were computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16OTHEReigen
- *
- * =====================================================================
- SUBROUTINE ZHBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
- $ LDZ, WORK, RWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, UPLO
- INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION RWORK( * ), W( * )
- COMPLEX*16 AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
- $ Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL UPPER, WANTZ
- CHARACTER VECT
- INTEGER IINFO, INDE, INDWRK
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL DSTERF, XERBLA, ZHBGST, ZHBTRD, ZPBSTF, ZSTEQR
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- WANTZ = LSAME( JOBZ, 'V' )
- UPPER = LSAME( UPLO, 'U' )
- *
- INFO = 0
- IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( KA.LT.0 ) THEN
- INFO = -4
- ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
- INFO = -5
- ELSE IF( LDAB.LT.KA+1 ) THEN
- INFO = -7
- ELSE IF( LDBB.LT.KB+1 ) THEN
- INFO = -9
- ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
- INFO = -12
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZHBGV ', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Form a split Cholesky factorization of B.
- *
- CALL ZPBSTF( UPLO, N, KB, BB, LDBB, INFO )
- IF( INFO.NE.0 ) THEN
- INFO = N + INFO
- RETURN
- END IF
- *
- * Transform problem to standard eigenvalue problem.
- *
- INDE = 1
- INDWRK = INDE + N
- CALL ZHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
- $ WORK, RWORK( INDWRK ), IINFO )
- *
- * Reduce to tridiagonal form.
- *
- IF( WANTZ ) THEN
- VECT = 'U'
- ELSE
- VECT = 'N'
- END IF
- CALL ZHBTRD( VECT, UPLO, N, KA, AB, LDAB, W, RWORK( INDE ), Z,
- $ LDZ, WORK, IINFO )
- *
- * For eigenvalues only, call DSTERF. For eigenvectors, call ZSTEQR.
- *
- IF( .NOT.WANTZ ) THEN
- CALL DSTERF( N, W, RWORK( INDE ), INFO )
- ELSE
- CALL ZSTEQR( JOBZ, N, W, RWORK( INDE ), Z, LDZ,
- $ RWORK( INDWRK ), INFO )
- END IF
- RETURN
- *
- * End of ZHBGV
- *
- END
|