|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243 |
- *> \brief \b ZGTTRF
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZGTTRF + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgttrf.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgttrf.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgttrf.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZGTTRF( N, DL, D, DU, DU2, IPIV, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, N
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX*16 D( * ), DL( * ), DU( * ), DU2( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZGTTRF computes an LU factorization of a complex tridiagonal matrix A
- *> using elimination with partial pivoting and row interchanges.
- *>
- *> The factorization has the form
- *> A = L * U
- *> where L is a product of permutation and unit lower bidiagonal
- *> matrices and U is upper triangular with nonzeros in only the main
- *> diagonal and first two superdiagonals.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A.
- *> \endverbatim
- *>
- *> \param[in,out] DL
- *> \verbatim
- *> DL is COMPLEX*16 array, dimension (N-1)
- *> On entry, DL must contain the (n-1) sub-diagonal elements of
- *> A.
- *>
- *> On exit, DL is overwritten by the (n-1) multipliers that
- *> define the matrix L from the LU factorization of A.
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is COMPLEX*16 array, dimension (N)
- *> On entry, D must contain the diagonal elements of A.
- *>
- *> On exit, D is overwritten by the n diagonal elements of the
- *> upper triangular matrix U from the LU factorization of A.
- *> \endverbatim
- *>
- *> \param[in,out] DU
- *> \verbatim
- *> DU is COMPLEX*16 array, dimension (N-1)
- *> On entry, DU must contain the (n-1) super-diagonal elements
- *> of A.
- *>
- *> On exit, DU is overwritten by the (n-1) elements of the first
- *> super-diagonal of U.
- *> \endverbatim
- *>
- *> \param[out] DU2
- *> \verbatim
- *> DU2 is COMPLEX*16 array, dimension (N-2)
- *> On exit, DU2 is overwritten by the (n-2) elements of the
- *> second super-diagonal of U.
- *> \endverbatim
- *>
- *> \param[out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> The pivot indices; for 1 <= i <= n, row i of the matrix was
- *> interchanged with row IPIV(i). IPIV(i) will always be either
- *> i or i+1; IPIV(i) = i indicates a row interchange was not
- *> required.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -k, the k-th argument had an illegal value
- *> > 0: if INFO = k, U(k,k) is exactly zero. The factorization
- *> has been completed, but the factor U is exactly
- *> singular, and division by zero will occur if it is used
- *> to solve a system of equations.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16GTcomputational
- *
- * =====================================================================
- SUBROUTINE ZGTTRF( N, DL, D, DU, DU2, IPIV, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INFO, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX*16 D( * ), DL( * ), DU( * ), DU2( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER ( ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I
- COMPLEX*16 FACT, TEMP, ZDUM
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DIMAG
- * ..
- * .. Statement Functions ..
- DOUBLE PRECISION CABS1
- * ..
- * .. Statement Function definitions ..
- CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- IF( N.LT.0 ) THEN
- INFO = -1
- CALL XERBLA( 'ZGTTRF', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Initialize IPIV(i) = i and DU2(i) = 0
- *
- DO 10 I = 1, N
- IPIV( I ) = I
- 10 CONTINUE
- DO 20 I = 1, N - 2
- DU2( I ) = ZERO
- 20 CONTINUE
- *
- DO 30 I = 1, N - 2
- IF( CABS1( D( I ) ).GE.CABS1( DL( I ) ) ) THEN
- *
- * No row interchange required, eliminate DL(I)
- *
- IF( CABS1( D( I ) ).NE.ZERO ) THEN
- FACT = DL( I ) / D( I )
- DL( I ) = FACT
- D( I+1 ) = D( I+1 ) - FACT*DU( I )
- END IF
- ELSE
- *
- * Interchange rows I and I+1, eliminate DL(I)
- *
- FACT = D( I ) / DL( I )
- D( I ) = DL( I )
- DL( I ) = FACT
- TEMP = DU( I )
- DU( I ) = D( I+1 )
- D( I+1 ) = TEMP - FACT*D( I+1 )
- DU2( I ) = DU( I+1 )
- DU( I+1 ) = -FACT*DU( I+1 )
- IPIV( I ) = I + 1
- END IF
- 30 CONTINUE
- IF( N.GT.1 ) THEN
- I = N - 1
- IF( CABS1( D( I ) ).GE.CABS1( DL( I ) ) ) THEN
- IF( CABS1( D( I ) ).NE.ZERO ) THEN
- FACT = DL( I ) / D( I )
- DL( I ) = FACT
- D( I+1 ) = D( I+1 ) - FACT*DU( I )
- END IF
- ELSE
- FACT = D( I ) / DL( I )
- D( I ) = DL( I )
- DL( I ) = FACT
- TEMP = DU( I )
- DU( I ) = D( I+1 )
- D( I+1 ) = TEMP - FACT*D( I+1 )
- IPIV( I ) = I + 1
- END IF
- END IF
- *
- * Check for a zero on the diagonal of U.
- *
- DO 40 I = 1, N
- IF( CABS1( D( I ) ).EQ.ZERO ) THEN
- INFO = I
- GO TO 50
- END IF
- 40 CONTINUE
- 50 CONTINUE
- *
- RETURN
- *
- * End of ZGTTRF
- *
- END
|