|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283 |
- *> \brief \b ZGEQRFP
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZGEQRFP + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqrfp.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqrfp.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqrfp.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZGEQR2P computes a QR factorization of a complex M-by-N matrix A:
- *>
- *> A = Q * ( R ),
- *> ( 0 )
- *>
- *> where:
- *>
- *> Q is a M-by-M orthogonal matrix;
- *> R is an upper-triangular N-by-N matrix with nonnegative diagonal
- *> entries;
- *> 0 is a (M-N)-by-N zero matrix, if M > N.
- *>
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the M-by-N matrix A.
- *> On exit, the elements on and above the diagonal of the array
- *> contain the min(M,N)-by-N upper trapezoidal matrix R (R is
- *> upper triangular if m >= n). The diagonal entries of R
- *> are real and nonnegative; The elements below the diagonal,
- *> with the array TAU, represent the unitary matrix Q as a
- *> product of min(m,n) elementary reflectors (see Further
- *> Details).
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is COMPLEX*16 array, dimension (min(M,N))
- *> The scalar factors of the elementary reflectors (see Further
- *> Details).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,N).
- *> For optimum performance LWORK >= N*NB, where NB is
- *> the optimal blocksize.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2019
- *
- *> \ingroup complex16GEcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The matrix Q is represented as a product of elementary reflectors
- *>
- *> Q = H(1) H(2) . . . H(k), where k = min(m,n).
- *>
- *> Each H(i) has the form
- *>
- *> H(i) = I - tau * v * v**H
- *>
- *> where tau is a complex scalar, and v is a complex vector with
- *> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
- *> and tau in TAU(i).
- *>
- *> See Lapack Working Note 203 for details
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE ZGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine (version 3.9.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2019
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
- $ NBMIN, NX
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZGEQR2P, ZLARFB, ZLARFT
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- EXTERNAL ILAENV
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- NB = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
- LWKOPT = N*NB
- WORK( 1 ) = LWKOPT
- LQUERY = ( LWORK.EQ.-1 )
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
- INFO = -7
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZGEQRFP', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- K = MIN( M, N )
- IF( K.EQ.0 ) THEN
- WORK( 1 ) = 1
- RETURN
- END IF
- *
- NBMIN = 2
- NX = 0
- IWS = N
- IF( NB.GT.1 .AND. NB.LT.K ) THEN
- *
- * Determine when to cross over from blocked to unblocked code.
- *
- NX = MAX( 0, ILAENV( 3, 'ZGEQRF', ' ', M, N, -1, -1 ) )
- IF( NX.LT.K ) THEN
- *
- * Determine if workspace is large enough for blocked code.
- *
- LDWORK = N
- IWS = LDWORK*NB
- IF( LWORK.LT.IWS ) THEN
- *
- * Not enough workspace to use optimal NB: reduce NB and
- * determine the minimum value of NB.
- *
- NB = LWORK / LDWORK
- NBMIN = MAX( 2, ILAENV( 2, 'ZGEQRF', ' ', M, N, -1,
- $ -1 ) )
- END IF
- END IF
- END IF
- *
- IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
- *
- * Use blocked code initially
- *
- DO 10 I = 1, K - NX, NB
- IB = MIN( K-I+1, NB )
- *
- * Compute the QR factorization of the current block
- * A(i:m,i:i+ib-1)
- *
- CALL ZGEQR2P( M-I+1, IB, A( I, I ), LDA, TAU( I ), WORK,
- $ IINFO )
- IF( I+IB.LE.N ) THEN
- *
- * Form the triangular factor of the block reflector
- * H = H(i) H(i+1) . . . H(i+ib-1)
- *
- CALL ZLARFT( 'Forward', 'Columnwise', M-I+1, IB,
- $ A( I, I ), LDA, TAU( I ), WORK, LDWORK )
- *
- * Apply H**H to A(i:m,i+ib:n) from the left
- *
- CALL ZLARFB( 'Left', 'Conjugate transpose', 'Forward',
- $ 'Columnwise', M-I+1, N-I-IB+1, IB,
- $ A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ),
- $ LDA, WORK( IB+1 ), LDWORK )
- END IF
- 10 CONTINUE
- ELSE
- I = 1
- END IF
- *
- * Use unblocked code to factor the last or only block.
- *
- IF( I.LE.K )
- $ CALL ZGEQR2P( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
- $ IINFO )
- *
- WORK( 1 ) = IWS
- RETURN
- *
- * End of ZGEQRFP
- *
- END
|