|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573 |
- *> \brief \b ZGBBRD
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZGBBRD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbbrd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbbrd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbbrd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
- * LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER VECT
- * INTEGER INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION D( * ), E( * ), RWORK( * )
- * COMPLEX*16 AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ),
- * $ Q( LDQ, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZGBBRD reduces a complex general m-by-n band matrix A to real upper
- *> bidiagonal form B by a unitary transformation: Q**H * A * P = B.
- *>
- *> The routine computes B, and optionally forms Q or P**H, or computes
- *> Q**H*C for a given matrix C.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] VECT
- *> \verbatim
- *> VECT is CHARACTER*1
- *> Specifies whether or not the matrices Q and P**H are to be
- *> formed.
- *> = 'N': do not form Q or P**H;
- *> = 'Q': form Q only;
- *> = 'P': form P**H only;
- *> = 'B': form both.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NCC
- *> \verbatim
- *> NCC is INTEGER
- *> The number of columns of the matrix C. NCC >= 0.
- *> \endverbatim
- *>
- *> \param[in] KL
- *> \verbatim
- *> KL is INTEGER
- *> The number of subdiagonals of the matrix A. KL >= 0.
- *> \endverbatim
- *>
- *> \param[in] KU
- *> \verbatim
- *> KU is INTEGER
- *> The number of superdiagonals of the matrix A. KU >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AB
- *> \verbatim
- *> AB is COMPLEX*16 array, dimension (LDAB,N)
- *> On entry, the m-by-n band matrix A, stored in rows 1 to
- *> KL+KU+1. The j-th column of A is stored in the j-th column of
- *> the array AB as follows:
- *> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
- *> On exit, A is overwritten by values generated during the
- *> reduction.
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array A. LDAB >= KL+KU+1.
- *> \endverbatim
- *>
- *> \param[out] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (min(M,N))
- *> The diagonal elements of the bidiagonal matrix B.
- *> \endverbatim
- *>
- *> \param[out] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (min(M,N)-1)
- *> The superdiagonal elements of the bidiagonal matrix B.
- *> \endverbatim
- *>
- *> \param[out] Q
- *> \verbatim
- *> Q is COMPLEX*16 array, dimension (LDQ,M)
- *> If VECT = 'Q' or 'B', the m-by-m unitary matrix Q.
- *> If VECT = 'N' or 'P', the array Q is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q.
- *> LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
- *> \endverbatim
- *>
- *> \param[out] PT
- *> \verbatim
- *> PT is COMPLEX*16 array, dimension (LDPT,N)
- *> If VECT = 'P' or 'B', the n-by-n unitary matrix P'.
- *> If VECT = 'N' or 'Q', the array PT is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDPT
- *> \verbatim
- *> LDPT is INTEGER
- *> The leading dimension of the array PT.
- *> LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is COMPLEX*16 array, dimension (LDC,NCC)
- *> On entry, an m-by-ncc matrix C.
- *> On exit, C is overwritten by Q**H*C.
- *> C is not referenced if NCC = 0.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C.
- *> LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (max(M,N))
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (max(M,N))
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16GBcomputational
- *
- * =====================================================================
- SUBROUTINE ZGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
- $ LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER VECT
- INTEGER INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION D( * ), E( * ), RWORK( * )
- COMPLEX*16 AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ),
- $ Q( LDQ, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER ( ZERO = 0.0D+0 )
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
- $ CONE = ( 1.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL WANTB, WANTC, WANTPT, WANTQ
- INTEGER I, INCA, J, J1, J2, KB, KB1, KK, KLM, KLU1,
- $ KUN, L, MINMN, ML, ML0, MU, MU0, NR, NRT
- DOUBLE PRECISION ABST, RC
- COMPLEX*16 RA, RB, RS, T
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZLARGV, ZLARTG, ZLARTV, ZLASET, ZROT,
- $ ZSCAL
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DCONJG, MAX, MIN
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters
- *
- WANTB = LSAME( VECT, 'B' )
- WANTQ = LSAME( VECT, 'Q' ) .OR. WANTB
- WANTPT = LSAME( VECT, 'P' ) .OR. WANTB
- WANTC = NCC.GT.0
- KLU1 = KL + KU + 1
- INFO = 0
- IF( .NOT.WANTQ .AND. .NOT.WANTPT .AND. .NOT.LSAME( VECT, 'N' ) )
- $ THEN
- INFO = -1
- ELSE IF( M.LT.0 ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( NCC.LT.0 ) THEN
- INFO = -4
- ELSE IF( KL.LT.0 ) THEN
- INFO = -5
- ELSE IF( KU.LT.0 ) THEN
- INFO = -6
- ELSE IF( LDAB.LT.KLU1 ) THEN
- INFO = -8
- ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. LDQ.LT.MAX( 1, M ) ) THEN
- INFO = -12
- ELSE IF( LDPT.LT.1 .OR. WANTPT .AND. LDPT.LT.MAX( 1, N ) ) THEN
- INFO = -14
- ELSE IF( LDC.LT.1 .OR. WANTC .AND. LDC.LT.MAX( 1, M ) ) THEN
- INFO = -16
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZGBBRD', -INFO )
- RETURN
- END IF
- *
- * Initialize Q and P**H to the unit matrix, if needed
- *
- IF( WANTQ )
- $ CALL ZLASET( 'Full', M, M, CZERO, CONE, Q, LDQ )
- IF( WANTPT )
- $ CALL ZLASET( 'Full', N, N, CZERO, CONE, PT, LDPT )
- *
- * Quick return if possible.
- *
- IF( M.EQ.0 .OR. N.EQ.0 )
- $ RETURN
- *
- MINMN = MIN( M, N )
- *
- IF( KL+KU.GT.1 ) THEN
- *
- * Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce
- * first to lower bidiagonal form and then transform to upper
- * bidiagonal
- *
- IF( KU.GT.0 ) THEN
- ML0 = 1
- MU0 = 2
- ELSE
- ML0 = 2
- MU0 = 1
- END IF
- *
- * Wherever possible, plane rotations are generated and applied in
- * vector operations of length NR over the index set J1:J2:KLU1.
- *
- * The complex sines of the plane rotations are stored in WORK,
- * and the real cosines in RWORK.
- *
- KLM = MIN( M-1, KL )
- KUN = MIN( N-1, KU )
- KB = KLM + KUN
- KB1 = KB + 1
- INCA = KB1*LDAB
- NR = 0
- J1 = KLM + 2
- J2 = 1 - KUN
- *
- DO 90 I = 1, MINMN
- *
- * Reduce i-th column and i-th row of matrix to bidiagonal form
- *
- ML = KLM + 1
- MU = KUN + 1
- DO 80 KK = 1, KB
- J1 = J1 + KB
- J2 = J2 + KB
- *
- * generate plane rotations to annihilate nonzero elements
- * which have been created below the band
- *
- IF( NR.GT.0 )
- $ CALL ZLARGV( NR, AB( KLU1, J1-KLM-1 ), INCA,
- $ WORK( J1 ), KB1, RWORK( J1 ), KB1 )
- *
- * apply plane rotations from the left
- *
- DO 10 L = 1, KB
- IF( J2-KLM+L-1.GT.N ) THEN
- NRT = NR - 1
- ELSE
- NRT = NR
- END IF
- IF( NRT.GT.0 )
- $ CALL ZLARTV( NRT, AB( KLU1-L, J1-KLM+L-1 ), INCA,
- $ AB( KLU1-L+1, J1-KLM+L-1 ), INCA,
- $ RWORK( J1 ), WORK( J1 ), KB1 )
- 10 CONTINUE
- *
- IF( ML.GT.ML0 ) THEN
- IF( ML.LE.M-I+1 ) THEN
- *
- * generate plane rotation to annihilate a(i+ml-1,i)
- * within the band, and apply rotation from the left
- *
- CALL ZLARTG( AB( KU+ML-1, I ), AB( KU+ML, I ),
- $ RWORK( I+ML-1 ), WORK( I+ML-1 ), RA )
- AB( KU+ML-1, I ) = RA
- IF( I.LT.N )
- $ CALL ZROT( MIN( KU+ML-2, N-I ),
- $ AB( KU+ML-2, I+1 ), LDAB-1,
- $ AB( KU+ML-1, I+1 ), LDAB-1,
- $ RWORK( I+ML-1 ), WORK( I+ML-1 ) )
- END IF
- NR = NR + 1
- J1 = J1 - KB1
- END IF
- *
- IF( WANTQ ) THEN
- *
- * accumulate product of plane rotations in Q
- *
- DO 20 J = J1, J2, KB1
- CALL ZROT( M, Q( 1, J-1 ), 1, Q( 1, J ), 1,
- $ RWORK( J ), DCONJG( WORK( J ) ) )
- 20 CONTINUE
- END IF
- *
- IF( WANTC ) THEN
- *
- * apply plane rotations to C
- *
- DO 30 J = J1, J2, KB1
- CALL ZROT( NCC, C( J-1, 1 ), LDC, C( J, 1 ), LDC,
- $ RWORK( J ), WORK( J ) )
- 30 CONTINUE
- END IF
- *
- IF( J2+KUN.GT.N ) THEN
- *
- * adjust J2 to keep within the bounds of the matrix
- *
- NR = NR - 1
- J2 = J2 - KB1
- END IF
- *
- DO 40 J = J1, J2, KB1
- *
- * create nonzero element a(j-1,j+ku) above the band
- * and store it in WORK(n+1:2*n)
- *
- WORK( J+KUN ) = WORK( J )*AB( 1, J+KUN )
- AB( 1, J+KUN ) = RWORK( J )*AB( 1, J+KUN )
- 40 CONTINUE
- *
- * generate plane rotations to annihilate nonzero elements
- * which have been generated above the band
- *
- IF( NR.GT.0 )
- $ CALL ZLARGV( NR, AB( 1, J1+KUN-1 ), INCA,
- $ WORK( J1+KUN ), KB1, RWORK( J1+KUN ),
- $ KB1 )
- *
- * apply plane rotations from the right
- *
- DO 50 L = 1, KB
- IF( J2+L-1.GT.M ) THEN
- NRT = NR - 1
- ELSE
- NRT = NR
- END IF
- IF( NRT.GT.0 )
- $ CALL ZLARTV( NRT, AB( L+1, J1+KUN-1 ), INCA,
- $ AB( L, J1+KUN ), INCA,
- $ RWORK( J1+KUN ), WORK( J1+KUN ), KB1 )
- 50 CONTINUE
- *
- IF( ML.EQ.ML0 .AND. MU.GT.MU0 ) THEN
- IF( MU.LE.N-I+1 ) THEN
- *
- * generate plane rotation to annihilate a(i,i+mu-1)
- * within the band, and apply rotation from the right
- *
- CALL ZLARTG( AB( KU-MU+3, I+MU-2 ),
- $ AB( KU-MU+2, I+MU-1 ),
- $ RWORK( I+MU-1 ), WORK( I+MU-1 ), RA )
- AB( KU-MU+3, I+MU-2 ) = RA
- CALL ZROT( MIN( KL+MU-2, M-I ),
- $ AB( KU-MU+4, I+MU-2 ), 1,
- $ AB( KU-MU+3, I+MU-1 ), 1,
- $ RWORK( I+MU-1 ), WORK( I+MU-1 ) )
- END IF
- NR = NR + 1
- J1 = J1 - KB1
- END IF
- *
- IF( WANTPT ) THEN
- *
- * accumulate product of plane rotations in P**H
- *
- DO 60 J = J1, J2, KB1
- CALL ZROT( N, PT( J+KUN-1, 1 ), LDPT,
- $ PT( J+KUN, 1 ), LDPT, RWORK( J+KUN ),
- $ DCONJG( WORK( J+KUN ) ) )
- 60 CONTINUE
- END IF
- *
- IF( J2+KB.GT.M ) THEN
- *
- * adjust J2 to keep within the bounds of the matrix
- *
- NR = NR - 1
- J2 = J2 - KB1
- END IF
- *
- DO 70 J = J1, J2, KB1
- *
- * create nonzero element a(j+kl+ku,j+ku-1) below the
- * band and store it in WORK(1:n)
- *
- WORK( J+KB ) = WORK( J+KUN )*AB( KLU1, J+KUN )
- AB( KLU1, J+KUN ) = RWORK( J+KUN )*AB( KLU1, J+KUN )
- 70 CONTINUE
- *
- IF( ML.GT.ML0 ) THEN
- ML = ML - 1
- ELSE
- MU = MU - 1
- END IF
- 80 CONTINUE
- 90 CONTINUE
- END IF
- *
- IF( KU.EQ.0 .AND. KL.GT.0 ) THEN
- *
- * A has been reduced to complex lower bidiagonal form
- *
- * Transform lower bidiagonal form to upper bidiagonal by applying
- * plane rotations from the left, overwriting superdiagonal
- * elements on subdiagonal elements
- *
- DO 100 I = 1, MIN( M-1, N )
- CALL ZLARTG( AB( 1, I ), AB( 2, I ), RC, RS, RA )
- AB( 1, I ) = RA
- IF( I.LT.N ) THEN
- AB( 2, I ) = RS*AB( 1, I+1 )
- AB( 1, I+1 ) = RC*AB( 1, I+1 )
- END IF
- IF( WANTQ )
- $ CALL ZROT( M, Q( 1, I ), 1, Q( 1, I+1 ), 1, RC,
- $ DCONJG( RS ) )
- IF( WANTC )
- $ CALL ZROT( NCC, C( I, 1 ), LDC, C( I+1, 1 ), LDC, RC,
- $ RS )
- 100 CONTINUE
- ELSE
- *
- * A has been reduced to complex upper bidiagonal form or is
- * diagonal
- *
- IF( KU.GT.0 .AND. M.LT.N ) THEN
- *
- * Annihilate a(m,m+1) by applying plane rotations from the
- * right
- *
- RB = AB( KU, M+1 )
- DO 110 I = M, 1, -1
- CALL ZLARTG( AB( KU+1, I ), RB, RC, RS, RA )
- AB( KU+1, I ) = RA
- IF( I.GT.1 ) THEN
- RB = -DCONJG( RS )*AB( KU, I )
- AB( KU, I ) = RC*AB( KU, I )
- END IF
- IF( WANTPT )
- $ CALL ZROT( N, PT( I, 1 ), LDPT, PT( M+1, 1 ), LDPT,
- $ RC, DCONJG( RS ) )
- 110 CONTINUE
- END IF
- END IF
- *
- * Make diagonal and superdiagonal elements real, storing them in D
- * and E
- *
- T = AB( KU+1, 1 )
- DO 120 I = 1, MINMN
- ABST = ABS( T )
- D( I ) = ABST
- IF( ABST.NE.ZERO ) THEN
- T = T / ABST
- ELSE
- T = CONE
- END IF
- IF( WANTQ )
- $ CALL ZSCAL( M, T, Q( 1, I ), 1 )
- IF( WANTC )
- $ CALL ZSCAL( NCC, DCONJG( T ), C( I, 1 ), LDC )
- IF( I.LT.MINMN ) THEN
- IF( KU.EQ.0 .AND. KL.EQ.0 ) THEN
- E( I ) = ZERO
- T = AB( 1, I+1 )
- ELSE
- IF( KU.EQ.0 ) THEN
- T = AB( 2, I )*DCONJG( T )
- ELSE
- T = AB( KU, I+1 )*DCONJG( T )
- END IF
- ABST = ABS( T )
- E( I ) = ABST
- IF( ABST.NE.ZERO ) THEN
- T = T / ABST
- ELSE
- T = CONE
- END IF
- IF( WANTPT )
- $ CALL ZSCAL( N, T, PT( I+1, 1 ), LDPT )
- T = AB( KU+1, I+1 )*DCONJG( T )
- END IF
- END IF
- 120 CONTINUE
- RETURN
- *
- * End of ZGBBRD
- *
- END
|