You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

stfttr.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495
  1. *> \brief \b STFTTR copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download STFTTR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stfttr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stfttr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stfttr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE STFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER TRANSR, UPLO
  25. * INTEGER INFO, N, LDA
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL A( 0: LDA-1, 0: * ), ARF( 0: * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> STFTTR copies a triangular matrix A from rectangular full packed
  38. *> format (TF) to standard full format (TR).
  39. *> \endverbatim
  40. *
  41. * Arguments:
  42. * ==========
  43. *
  44. *> \param[in] TRANSR
  45. *> \verbatim
  46. *> TRANSR is CHARACTER*1
  47. *> = 'N': ARF is in Normal format;
  48. *> = 'T': ARF is in Transpose format.
  49. *> \endverbatim
  50. *>
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': A is upper triangular;
  55. *> = 'L': A is lower triangular.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrices ARF and A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] ARF
  65. *> \verbatim
  66. *> ARF is REAL array, dimension (N*(N+1)/2).
  67. *> On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L')
  68. *> matrix A in RFP format. See the "Notes" below for more
  69. *> details.
  70. *> \endverbatim
  71. *>
  72. *> \param[out] A
  73. *> \verbatim
  74. *> A is REAL array, dimension (LDA,N)
  75. *> On exit, the triangular matrix A. If UPLO = 'U', the
  76. *> leading N-by-N upper triangular part of the array A contains
  77. *> the upper triangular matrix, and the strictly lower
  78. *> triangular part of A is not referenced. If UPLO = 'L', the
  79. *> leading N-by-N lower triangular part of the array A contains
  80. *> the lower triangular matrix, and the strictly upper
  81. *> triangular part of A is not referenced.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] LDA
  85. *> \verbatim
  86. *> LDA is INTEGER
  87. *> The leading dimension of the array A. LDA >= max(1,N).
  88. *> \endverbatim
  89. *>
  90. *> \param[out] INFO
  91. *> \verbatim
  92. *> INFO is INTEGER
  93. *> = 0: successful exit
  94. *> < 0: if INFO = -i, the i-th argument had an illegal value
  95. *> \endverbatim
  96. *
  97. * Authors:
  98. * ========
  99. *
  100. *> \author Univ. of Tennessee
  101. *> \author Univ. of California Berkeley
  102. *> \author Univ. of Colorado Denver
  103. *> \author NAG Ltd.
  104. *
  105. *> \date December 2016
  106. *
  107. *> \ingroup realOTHERcomputational
  108. *
  109. *> \par Further Details:
  110. * =====================
  111. *>
  112. *> \verbatim
  113. *>
  114. *> We first consider Rectangular Full Packed (RFP) Format when N is
  115. *> even. We give an example where N = 6.
  116. *>
  117. *> AP is Upper AP is Lower
  118. *>
  119. *> 00 01 02 03 04 05 00
  120. *> 11 12 13 14 15 10 11
  121. *> 22 23 24 25 20 21 22
  122. *> 33 34 35 30 31 32 33
  123. *> 44 45 40 41 42 43 44
  124. *> 55 50 51 52 53 54 55
  125. *>
  126. *>
  127. *> Let TRANSR = 'N'. RFP holds AP as follows:
  128. *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  129. *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  130. *> the transpose of the first three columns of AP upper.
  131. *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  132. *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  133. *> the transpose of the last three columns of AP lower.
  134. *> This covers the case N even and TRANSR = 'N'.
  135. *>
  136. *> RFP A RFP A
  137. *>
  138. *> 03 04 05 33 43 53
  139. *> 13 14 15 00 44 54
  140. *> 23 24 25 10 11 55
  141. *> 33 34 35 20 21 22
  142. *> 00 44 45 30 31 32
  143. *> 01 11 55 40 41 42
  144. *> 02 12 22 50 51 52
  145. *>
  146. *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  147. *> transpose of RFP A above. One therefore gets:
  148. *>
  149. *>
  150. *> RFP A RFP A
  151. *>
  152. *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
  153. *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
  154. *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
  155. *>
  156. *>
  157. *> We then consider Rectangular Full Packed (RFP) Format when N is
  158. *> odd. We give an example where N = 5.
  159. *>
  160. *> AP is Upper AP is Lower
  161. *>
  162. *> 00 01 02 03 04 00
  163. *> 11 12 13 14 10 11
  164. *> 22 23 24 20 21 22
  165. *> 33 34 30 31 32 33
  166. *> 44 40 41 42 43 44
  167. *>
  168. *>
  169. *> Let TRANSR = 'N'. RFP holds AP as follows:
  170. *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  171. *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  172. *> the transpose of the first two columns of AP upper.
  173. *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  174. *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  175. *> the transpose of the last two columns of AP lower.
  176. *> This covers the case N odd and TRANSR = 'N'.
  177. *>
  178. *> RFP A RFP A
  179. *>
  180. *> 02 03 04 00 33 43
  181. *> 12 13 14 10 11 44
  182. *> 22 23 24 20 21 22
  183. *> 00 33 34 30 31 32
  184. *> 01 11 44 40 41 42
  185. *>
  186. *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  187. *> transpose of RFP A above. One therefore gets:
  188. *>
  189. *> RFP A RFP A
  190. *>
  191. *> 02 12 22 00 01 00 10 20 30 40 50
  192. *> 03 13 23 33 11 33 11 21 31 41 51
  193. *> 04 14 24 34 44 43 44 22 32 42 52
  194. *> \endverbatim
  195. *
  196. * =====================================================================
  197. SUBROUTINE STFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
  198. *
  199. * -- LAPACK computational routine (version 3.7.0) --
  200. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  201. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  202. * December 2016
  203. *
  204. * .. Scalar Arguments ..
  205. CHARACTER TRANSR, UPLO
  206. INTEGER INFO, N, LDA
  207. * ..
  208. * .. Array Arguments ..
  209. REAL A( 0: LDA-1, 0: * ), ARF( 0: * )
  210. * ..
  211. *
  212. * =====================================================================
  213. *
  214. * ..
  215. * .. Local Scalars ..
  216. LOGICAL LOWER, NISODD, NORMALTRANSR
  217. INTEGER N1, N2, K, NT, NX2, NP1X2
  218. INTEGER I, J, L, IJ
  219. * ..
  220. * .. External Functions ..
  221. LOGICAL LSAME
  222. EXTERNAL LSAME
  223. * ..
  224. * .. External Subroutines ..
  225. EXTERNAL XERBLA
  226. * ..
  227. * .. Intrinsic Functions ..
  228. INTRINSIC MAX, MOD
  229. * ..
  230. * .. Executable Statements ..
  231. *
  232. * Test the input parameters.
  233. *
  234. INFO = 0
  235. NORMALTRANSR = LSAME( TRANSR, 'N' )
  236. LOWER = LSAME( UPLO, 'L' )
  237. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  238. INFO = -1
  239. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  240. INFO = -2
  241. ELSE IF( N.LT.0 ) THEN
  242. INFO = -3
  243. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  244. INFO = -6
  245. END IF
  246. IF( INFO.NE.0 ) THEN
  247. CALL XERBLA( 'STFTTR', -INFO )
  248. RETURN
  249. END IF
  250. *
  251. * Quick return if possible
  252. *
  253. IF( N.LE.1 ) THEN
  254. IF( N.EQ.1 ) THEN
  255. A( 0, 0 ) = ARF( 0 )
  256. END IF
  257. RETURN
  258. END IF
  259. *
  260. * Size of array ARF(0:nt-1)
  261. *
  262. NT = N*( N+1 ) / 2
  263. *
  264. * set N1 and N2 depending on LOWER: for N even N1=N2=K
  265. *
  266. IF( LOWER ) THEN
  267. N2 = N / 2
  268. N1 = N - N2
  269. ELSE
  270. N1 = N / 2
  271. N2 = N - N1
  272. END IF
  273. *
  274. * If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2.
  275. * If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is
  276. * N--by--(N+1)/2.
  277. *
  278. IF( MOD( N, 2 ).EQ.0 ) THEN
  279. K = N / 2
  280. NISODD = .FALSE.
  281. IF( .NOT.LOWER )
  282. $ NP1X2 = N + N + 2
  283. ELSE
  284. NISODD = .TRUE.
  285. IF( .NOT.LOWER )
  286. $ NX2 = N + N
  287. END IF
  288. *
  289. IF( NISODD ) THEN
  290. *
  291. * N is odd
  292. *
  293. IF( NORMALTRANSR ) THEN
  294. *
  295. * N is odd and TRANSR = 'N'
  296. *
  297. IF( LOWER ) THEN
  298. *
  299. * N is odd, TRANSR = 'N', and UPLO = 'L'
  300. *
  301. IJ = 0
  302. DO J = 0, N2
  303. DO I = N1, N2 + J
  304. A( N2+J, I ) = ARF( IJ )
  305. IJ = IJ + 1
  306. END DO
  307. DO I = J, N - 1
  308. A( I, J ) = ARF( IJ )
  309. IJ = IJ + 1
  310. END DO
  311. END DO
  312. *
  313. ELSE
  314. *
  315. * N is odd, TRANSR = 'N', and UPLO = 'U'
  316. *
  317. IJ = NT - N
  318. DO J = N - 1, N1, -1
  319. DO I = 0, J
  320. A( I, J ) = ARF( IJ )
  321. IJ = IJ + 1
  322. END DO
  323. DO L = J - N1, N1 - 1
  324. A( J-N1, L ) = ARF( IJ )
  325. IJ = IJ + 1
  326. END DO
  327. IJ = IJ - NX2
  328. END DO
  329. *
  330. END IF
  331. *
  332. ELSE
  333. *
  334. * N is odd and TRANSR = 'T'
  335. *
  336. IF( LOWER ) THEN
  337. *
  338. * N is odd, TRANSR = 'T', and UPLO = 'L'
  339. *
  340. IJ = 0
  341. DO J = 0, N2 - 1
  342. DO I = 0, J
  343. A( J, I ) = ARF( IJ )
  344. IJ = IJ + 1
  345. END DO
  346. DO I = N1 + J, N - 1
  347. A( I, N1+J ) = ARF( IJ )
  348. IJ = IJ + 1
  349. END DO
  350. END DO
  351. DO J = N2, N - 1
  352. DO I = 0, N1 - 1
  353. A( J, I ) = ARF( IJ )
  354. IJ = IJ + 1
  355. END DO
  356. END DO
  357. *
  358. ELSE
  359. *
  360. * N is odd, TRANSR = 'T', and UPLO = 'U'
  361. *
  362. IJ = 0
  363. DO J = 0, N1
  364. DO I = N1, N - 1
  365. A( J, I ) = ARF( IJ )
  366. IJ = IJ + 1
  367. END DO
  368. END DO
  369. DO J = 0, N1 - 1
  370. DO I = 0, J
  371. A( I, J ) = ARF( IJ )
  372. IJ = IJ + 1
  373. END DO
  374. DO L = N2 + J, N - 1
  375. A( N2+J, L ) = ARF( IJ )
  376. IJ = IJ + 1
  377. END DO
  378. END DO
  379. *
  380. END IF
  381. *
  382. END IF
  383. *
  384. ELSE
  385. *
  386. * N is even
  387. *
  388. IF( NORMALTRANSR ) THEN
  389. *
  390. * N is even and TRANSR = 'N'
  391. *
  392. IF( LOWER ) THEN
  393. *
  394. * N is even, TRANSR = 'N', and UPLO = 'L'
  395. *
  396. IJ = 0
  397. DO J = 0, K - 1
  398. DO I = K, K + J
  399. A( K+J, I ) = ARF( IJ )
  400. IJ = IJ + 1
  401. END DO
  402. DO I = J, N - 1
  403. A( I, J ) = ARF( IJ )
  404. IJ = IJ + 1
  405. END DO
  406. END DO
  407. *
  408. ELSE
  409. *
  410. * N is even, TRANSR = 'N', and UPLO = 'U'
  411. *
  412. IJ = NT - N - 1
  413. DO J = N - 1, K, -1
  414. DO I = 0, J
  415. A( I, J ) = ARF( IJ )
  416. IJ = IJ + 1
  417. END DO
  418. DO L = J - K, K - 1
  419. A( J-K, L ) = ARF( IJ )
  420. IJ = IJ + 1
  421. END DO
  422. IJ = IJ - NP1X2
  423. END DO
  424. *
  425. END IF
  426. *
  427. ELSE
  428. *
  429. * N is even and TRANSR = 'T'
  430. *
  431. IF( LOWER ) THEN
  432. *
  433. * N is even, TRANSR = 'T', and UPLO = 'L'
  434. *
  435. IJ = 0
  436. J = K
  437. DO I = K, N - 1
  438. A( I, J ) = ARF( IJ )
  439. IJ = IJ + 1
  440. END DO
  441. DO J = 0, K - 2
  442. DO I = 0, J
  443. A( J, I ) = ARF( IJ )
  444. IJ = IJ + 1
  445. END DO
  446. DO I = K + 1 + J, N - 1
  447. A( I, K+1+J ) = ARF( IJ )
  448. IJ = IJ + 1
  449. END DO
  450. END DO
  451. DO J = K - 1, N - 1
  452. DO I = 0, K - 1
  453. A( J, I ) = ARF( IJ )
  454. IJ = IJ + 1
  455. END DO
  456. END DO
  457. *
  458. ELSE
  459. *
  460. * N is even, TRANSR = 'T', and UPLO = 'U'
  461. *
  462. IJ = 0
  463. DO J = 0, K
  464. DO I = K, N - 1
  465. A( J, I ) = ARF( IJ )
  466. IJ = IJ + 1
  467. END DO
  468. END DO
  469. DO J = 0, K - 2
  470. DO I = 0, J
  471. A( I, J ) = ARF( IJ )
  472. IJ = IJ + 1
  473. END DO
  474. DO L = K + 1 + J, N - 1
  475. A( K+1+J, L ) = ARF( IJ )
  476. IJ = IJ + 1
  477. END DO
  478. END DO
  479. * Note that here, on exit of the loop, J = K-1
  480. DO I = 0, J
  481. A( I, J ) = ARF( IJ )
  482. IJ = IJ + 1
  483. END DO
  484. *
  485. END IF
  486. *
  487. END IF
  488. *
  489. END IF
  490. *
  491. RETURN
  492. *
  493. * End of STFTTR
  494. *
  495. END