You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssytrs.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445
  1. *> \brief \b SSYTRS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSYTRS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytrs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytrs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytrs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, LDB, N, NRHS
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * REAL A( LDA, * ), B( LDB, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> SSYTRS solves a system of linear equations A*X = B with a real
  39. *> symmetric matrix A using the factorization A = U*D*U**T or
  40. *> A = L*D*L**T computed by SSYTRF.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> Specifies whether the details of the factorization are stored
  50. *> as an upper or lower triangular matrix.
  51. *> = 'U': Upper triangular, form is A = U*D*U**T;
  52. *> = 'L': Lower triangular, form is A = L*D*L**T.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The order of the matrix A. N >= 0.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] NRHS
  62. *> \verbatim
  63. *> NRHS is INTEGER
  64. *> The number of right hand sides, i.e., the number of columns
  65. *> of the matrix B. NRHS >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] A
  69. *> \verbatim
  70. *> A is REAL array, dimension (LDA,N)
  71. *> The block diagonal matrix D and the multipliers used to
  72. *> obtain the factor U or L as computed by SSYTRF.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the array A. LDA >= max(1,N).
  79. *> \endverbatim
  80. *>
  81. *> \param[in] IPIV
  82. *> \verbatim
  83. *> IPIV is INTEGER array, dimension (N)
  84. *> Details of the interchanges and the block structure of D
  85. *> as determined by SSYTRF.
  86. *> \endverbatim
  87. *>
  88. *> \param[in,out] B
  89. *> \verbatim
  90. *> B is REAL array, dimension (LDB,NRHS)
  91. *> On entry, the right hand side matrix B.
  92. *> On exit, the solution matrix X.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDB
  96. *> \verbatim
  97. *> LDB is INTEGER
  98. *> The leading dimension of the array B. LDB >= max(1,N).
  99. *> \endverbatim
  100. *>
  101. *> \param[out] INFO
  102. *> \verbatim
  103. *> INFO is INTEGER
  104. *> = 0: successful exit
  105. *> < 0: if INFO = -i, the i-th argument had an illegal value
  106. *> \endverbatim
  107. *
  108. * Authors:
  109. * ========
  110. *
  111. *> \author Univ. of Tennessee
  112. *> \author Univ. of California Berkeley
  113. *> \author Univ. of Colorado Denver
  114. *> \author NAG Ltd.
  115. *
  116. *> \date December 2016
  117. *
  118. *> \ingroup realSYcomputational
  119. *
  120. * =====================================================================
  121. SUBROUTINE SSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
  122. *
  123. * -- LAPACK computational routine (version 3.7.0) --
  124. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  125. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  126. * December 2016
  127. *
  128. * .. Scalar Arguments ..
  129. CHARACTER UPLO
  130. INTEGER INFO, LDA, LDB, N, NRHS
  131. * ..
  132. * .. Array Arguments ..
  133. INTEGER IPIV( * )
  134. REAL A( LDA, * ), B( LDB, * )
  135. * ..
  136. *
  137. * =====================================================================
  138. *
  139. * .. Parameters ..
  140. REAL ONE
  141. PARAMETER ( ONE = 1.0E+0 )
  142. * ..
  143. * .. Local Scalars ..
  144. LOGICAL UPPER
  145. INTEGER J, K, KP
  146. REAL AK, AKM1, AKM1K, BK, BKM1, DENOM
  147. * ..
  148. * .. External Functions ..
  149. LOGICAL LSAME
  150. EXTERNAL LSAME
  151. * ..
  152. * .. External Subroutines ..
  153. EXTERNAL SGEMV, SGER, SSCAL, SSWAP, XERBLA
  154. * ..
  155. * .. Intrinsic Functions ..
  156. INTRINSIC MAX
  157. * ..
  158. * .. Executable Statements ..
  159. *
  160. INFO = 0
  161. UPPER = LSAME( UPLO, 'U' )
  162. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  163. INFO = -1
  164. ELSE IF( N.LT.0 ) THEN
  165. INFO = -2
  166. ELSE IF( NRHS.LT.0 ) THEN
  167. INFO = -3
  168. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  169. INFO = -5
  170. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  171. INFO = -8
  172. END IF
  173. IF( INFO.NE.0 ) THEN
  174. CALL XERBLA( 'SSYTRS', -INFO )
  175. RETURN
  176. END IF
  177. *
  178. * Quick return if possible
  179. *
  180. IF( N.EQ.0 .OR. NRHS.EQ.0 )
  181. $ RETURN
  182. *
  183. IF( UPPER ) THEN
  184. *
  185. * Solve A*X = B, where A = U*D*U**T.
  186. *
  187. * First solve U*D*X = B, overwriting B with X.
  188. *
  189. * K is the main loop index, decreasing from N to 1 in steps of
  190. * 1 or 2, depending on the size of the diagonal blocks.
  191. *
  192. K = N
  193. 10 CONTINUE
  194. *
  195. * If K < 1, exit from loop.
  196. *
  197. IF( K.LT.1 )
  198. $ GO TO 30
  199. *
  200. IF( IPIV( K ).GT.0 ) THEN
  201. *
  202. * 1 x 1 diagonal block
  203. *
  204. * Interchange rows K and IPIV(K).
  205. *
  206. KP = IPIV( K )
  207. IF( KP.NE.K )
  208. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  209. *
  210. * Multiply by inv(U(K)), where U(K) is the transformation
  211. * stored in column K of A.
  212. *
  213. CALL SGER( K-1, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
  214. $ B( 1, 1 ), LDB )
  215. *
  216. * Multiply by the inverse of the diagonal block.
  217. *
  218. CALL SSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB )
  219. K = K - 1
  220. ELSE
  221. *
  222. * 2 x 2 diagonal block
  223. *
  224. * Interchange rows K-1 and -IPIV(K).
  225. *
  226. KP = -IPIV( K )
  227. IF( KP.NE.K-1 )
  228. $ CALL SSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  229. *
  230. * Multiply by inv(U(K)), where U(K) is the transformation
  231. * stored in columns K-1 and K of A.
  232. *
  233. CALL SGER( K-2, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
  234. $ B( 1, 1 ), LDB )
  235. CALL SGER( K-2, NRHS, -ONE, A( 1, K-1 ), 1, B( K-1, 1 ),
  236. $ LDB, B( 1, 1 ), LDB )
  237. *
  238. * Multiply by the inverse of the diagonal block.
  239. *
  240. AKM1K = A( K-1, K )
  241. AKM1 = A( K-1, K-1 ) / AKM1K
  242. AK = A( K, K ) / AKM1K
  243. DENOM = AKM1*AK - ONE
  244. DO 20 J = 1, NRHS
  245. BKM1 = B( K-1, J ) / AKM1K
  246. BK = B( K, J ) / AKM1K
  247. B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
  248. B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
  249. 20 CONTINUE
  250. K = K - 2
  251. END IF
  252. *
  253. GO TO 10
  254. 30 CONTINUE
  255. *
  256. * Next solve U**T *X = B, overwriting B with X.
  257. *
  258. * K is the main loop index, increasing from 1 to N in steps of
  259. * 1 or 2, depending on the size of the diagonal blocks.
  260. *
  261. K = 1
  262. 40 CONTINUE
  263. *
  264. * If K > N, exit from loop.
  265. *
  266. IF( K.GT.N )
  267. $ GO TO 50
  268. *
  269. IF( IPIV( K ).GT.0 ) THEN
  270. *
  271. * 1 x 1 diagonal block
  272. *
  273. * Multiply by inv(U**T(K)), where U(K) is the transformation
  274. * stored in column K of A.
  275. *
  276. CALL SGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, A( 1, K ),
  277. $ 1, ONE, B( K, 1 ), LDB )
  278. *
  279. * Interchange rows K and IPIV(K).
  280. *
  281. KP = IPIV( K )
  282. IF( KP.NE.K )
  283. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  284. K = K + 1
  285. ELSE
  286. *
  287. * 2 x 2 diagonal block
  288. *
  289. * Multiply by inv(U**T(K+1)), where U(K+1) is the transformation
  290. * stored in columns K and K+1 of A.
  291. *
  292. CALL SGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, A( 1, K ),
  293. $ 1, ONE, B( K, 1 ), LDB )
  294. CALL SGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB,
  295. $ A( 1, K+1 ), 1, ONE, B( K+1, 1 ), LDB )
  296. *
  297. * Interchange rows K and -IPIV(K).
  298. *
  299. KP = -IPIV( K )
  300. IF( KP.NE.K )
  301. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  302. K = K + 2
  303. END IF
  304. *
  305. GO TO 40
  306. 50 CONTINUE
  307. *
  308. ELSE
  309. *
  310. * Solve A*X = B, where A = L*D*L**T.
  311. *
  312. * First solve L*D*X = B, overwriting B with X.
  313. *
  314. * K is the main loop index, increasing from 1 to N in steps of
  315. * 1 or 2, depending on the size of the diagonal blocks.
  316. *
  317. K = 1
  318. 60 CONTINUE
  319. *
  320. * If K > N, exit from loop.
  321. *
  322. IF( K.GT.N )
  323. $ GO TO 80
  324. *
  325. IF( IPIV( K ).GT.0 ) THEN
  326. *
  327. * 1 x 1 diagonal block
  328. *
  329. * Interchange rows K and IPIV(K).
  330. *
  331. KP = IPIV( K )
  332. IF( KP.NE.K )
  333. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  334. *
  335. * Multiply by inv(L(K)), where L(K) is the transformation
  336. * stored in column K of A.
  337. *
  338. IF( K.LT.N )
  339. $ CALL SGER( N-K, NRHS, -ONE, A( K+1, K ), 1, B( K, 1 ),
  340. $ LDB, B( K+1, 1 ), LDB )
  341. *
  342. * Multiply by the inverse of the diagonal block.
  343. *
  344. CALL SSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB )
  345. K = K + 1
  346. ELSE
  347. *
  348. * 2 x 2 diagonal block
  349. *
  350. * Interchange rows K+1 and -IPIV(K).
  351. *
  352. KP = -IPIV( K )
  353. IF( KP.NE.K+1 )
  354. $ CALL SSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  355. *
  356. * Multiply by inv(L(K)), where L(K) is the transformation
  357. * stored in columns K and K+1 of A.
  358. *
  359. IF( K.LT.N-1 ) THEN
  360. CALL SGER( N-K-1, NRHS, -ONE, A( K+2, K ), 1, B( K, 1 ),
  361. $ LDB, B( K+2, 1 ), LDB )
  362. CALL SGER( N-K-1, NRHS, -ONE, A( K+2, K+1 ), 1,
  363. $ B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
  364. END IF
  365. *
  366. * Multiply by the inverse of the diagonal block.
  367. *
  368. AKM1K = A( K+1, K )
  369. AKM1 = A( K, K ) / AKM1K
  370. AK = A( K+1, K+1 ) / AKM1K
  371. DENOM = AKM1*AK - ONE
  372. DO 70 J = 1, NRHS
  373. BKM1 = B( K, J ) / AKM1K
  374. BK = B( K+1, J ) / AKM1K
  375. B( K, J ) = ( AK*BKM1-BK ) / DENOM
  376. B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  377. 70 CONTINUE
  378. K = K + 2
  379. END IF
  380. *
  381. GO TO 60
  382. 80 CONTINUE
  383. *
  384. * Next solve L**T *X = B, overwriting B with X.
  385. *
  386. * K is the main loop index, decreasing from N to 1 in steps of
  387. * 1 or 2, depending on the size of the diagonal blocks.
  388. *
  389. K = N
  390. 90 CONTINUE
  391. *
  392. * If K < 1, exit from loop.
  393. *
  394. IF( K.LT.1 )
  395. $ GO TO 100
  396. *
  397. IF( IPIV( K ).GT.0 ) THEN
  398. *
  399. * 1 x 1 diagonal block
  400. *
  401. * Multiply by inv(L**T(K)), where L(K) is the transformation
  402. * stored in column K of A.
  403. *
  404. IF( K.LT.N )
  405. $ CALL SGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  406. $ LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
  407. *
  408. * Interchange rows K and IPIV(K).
  409. *
  410. KP = IPIV( K )
  411. IF( KP.NE.K )
  412. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  413. K = K - 1
  414. ELSE
  415. *
  416. * 2 x 2 diagonal block
  417. *
  418. * Multiply by inv(L**T(K-1)), where L(K-1) is the transformation
  419. * stored in columns K-1 and K of A.
  420. *
  421. IF( K.LT.N ) THEN
  422. CALL SGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  423. $ LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
  424. CALL SGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  425. $ LDB, A( K+1, K-1 ), 1, ONE, B( K-1, 1 ),
  426. $ LDB )
  427. END IF
  428. *
  429. * Interchange rows K and -IPIV(K).
  430. *
  431. KP = -IPIV( K )
  432. IF( KP.NE.K )
  433. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  434. K = K - 2
  435. END IF
  436. *
  437. GO TO 90
  438. 100 CONTINUE
  439. END IF
  440. *
  441. RETURN
  442. *
  443. * End of SSYTRS
  444. *
  445. END