You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssygs2.f 8.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. *> \brief \b SSYGS2 reduces a symmetric definite generalized eigenproblem to standard form, using the factorization results obtained from spotrf (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSYGS2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssygs2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssygs2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssygs2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, ITYPE, LDA, LDB, N
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL A( LDA, * ), B( LDB, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> SSYGS2 reduces a real symmetric-definite generalized eigenproblem
  38. *> to standard form.
  39. *>
  40. *> If ITYPE = 1, the problem is A*x = lambda*B*x,
  41. *> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
  42. *>
  43. *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
  44. *> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T *A*L.
  45. *>
  46. *> B must have been previously factorized as U**T *U or L*L**T by SPOTRF.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] ITYPE
  53. *> \verbatim
  54. *> ITYPE is INTEGER
  55. *> = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
  56. *> = 2 or 3: compute U*A*U**T or L**T *A*L.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] UPLO
  60. *> \verbatim
  61. *> UPLO is CHARACTER*1
  62. *> Specifies whether the upper or lower triangular part of the
  63. *> symmetric matrix A is stored, and how B has been factorized.
  64. *> = 'U': Upper triangular
  65. *> = 'L': Lower triangular
  66. *> \endverbatim
  67. *>
  68. *> \param[in] N
  69. *> \verbatim
  70. *> N is INTEGER
  71. *> The order of the matrices A and B. N >= 0.
  72. *> \endverbatim
  73. *>
  74. *> \param[in,out] A
  75. *> \verbatim
  76. *> A is REAL array, dimension (LDA,N)
  77. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  78. *> n by n upper triangular part of A contains the upper
  79. *> triangular part of the matrix A, and the strictly lower
  80. *> triangular part of A is not referenced. If UPLO = 'L', the
  81. *> leading n by n lower triangular part of A contains the lower
  82. *> triangular part of the matrix A, and the strictly upper
  83. *> triangular part of A is not referenced.
  84. *>
  85. *> On exit, if INFO = 0, the transformed matrix, stored in the
  86. *> same format as A.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDA
  90. *> \verbatim
  91. *> LDA is INTEGER
  92. *> The leading dimension of the array A. LDA >= max(1,N).
  93. *> \endverbatim
  94. *>
  95. *> \param[in] B
  96. *> \verbatim
  97. *> B is REAL array, dimension (LDB,N)
  98. *> The triangular factor from the Cholesky factorization of B,
  99. *> as returned by SPOTRF.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] LDB
  103. *> \verbatim
  104. *> LDB is INTEGER
  105. *> The leading dimension of the array B. LDB >= max(1,N).
  106. *> \endverbatim
  107. *>
  108. *> \param[out] INFO
  109. *> \verbatim
  110. *> INFO is INTEGER
  111. *> = 0: successful exit.
  112. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  113. *> \endverbatim
  114. *
  115. * Authors:
  116. * ========
  117. *
  118. *> \author Univ. of Tennessee
  119. *> \author Univ. of California Berkeley
  120. *> \author Univ. of Colorado Denver
  121. *> \author NAG Ltd.
  122. *
  123. *> \date December 2016
  124. *
  125. *> \ingroup realSYcomputational
  126. *
  127. * =====================================================================
  128. SUBROUTINE SSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  129. *
  130. * -- LAPACK computational routine (version 3.7.0) --
  131. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  132. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  133. * December 2016
  134. *
  135. * .. Scalar Arguments ..
  136. CHARACTER UPLO
  137. INTEGER INFO, ITYPE, LDA, LDB, N
  138. * ..
  139. * .. Array Arguments ..
  140. REAL A( LDA, * ), B( LDB, * )
  141. * ..
  142. *
  143. * =====================================================================
  144. *
  145. * .. Parameters ..
  146. REAL ONE, HALF
  147. PARAMETER ( ONE = 1.0, HALF = 0.5 )
  148. * ..
  149. * .. Local Scalars ..
  150. LOGICAL UPPER
  151. INTEGER K
  152. REAL AKK, BKK, CT
  153. * ..
  154. * .. External Subroutines ..
  155. EXTERNAL SAXPY, SSCAL, SSYR2, STRMV, STRSV, XERBLA
  156. * ..
  157. * .. Intrinsic Functions ..
  158. INTRINSIC MAX
  159. * ..
  160. * .. External Functions ..
  161. LOGICAL LSAME
  162. EXTERNAL LSAME
  163. * ..
  164. * .. Executable Statements ..
  165. *
  166. * Test the input parameters.
  167. *
  168. INFO = 0
  169. UPPER = LSAME( UPLO, 'U' )
  170. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  171. INFO = -1
  172. ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  173. INFO = -2
  174. ELSE IF( N.LT.0 ) THEN
  175. INFO = -3
  176. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  177. INFO = -5
  178. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  179. INFO = -7
  180. END IF
  181. IF( INFO.NE.0 ) THEN
  182. CALL XERBLA( 'SSYGS2', -INFO )
  183. RETURN
  184. END IF
  185. *
  186. IF( ITYPE.EQ.1 ) THEN
  187. IF( UPPER ) THEN
  188. *
  189. * Compute inv(U**T)*A*inv(U)
  190. *
  191. DO 10 K = 1, N
  192. *
  193. * Update the upper triangle of A(k:n,k:n)
  194. *
  195. AKK = A( K, K )
  196. BKK = B( K, K )
  197. AKK = AKK / BKK**2
  198. A( K, K ) = AKK
  199. IF( K.LT.N ) THEN
  200. CALL SSCAL( N-K, ONE / BKK, A( K, K+1 ), LDA )
  201. CT = -HALF*AKK
  202. CALL SAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
  203. $ LDA )
  204. CALL SSYR2( UPLO, N-K, -ONE, A( K, K+1 ), LDA,
  205. $ B( K, K+1 ), LDB, A( K+1, K+1 ), LDA )
  206. CALL SAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
  207. $ LDA )
  208. CALL STRSV( UPLO, 'Transpose', 'Non-unit', N-K,
  209. $ B( K+1, K+1 ), LDB, A( K, K+1 ), LDA )
  210. END IF
  211. 10 CONTINUE
  212. ELSE
  213. *
  214. * Compute inv(L)*A*inv(L**T)
  215. *
  216. DO 20 K = 1, N
  217. *
  218. * Update the lower triangle of A(k:n,k:n)
  219. *
  220. AKK = A( K, K )
  221. BKK = B( K, K )
  222. AKK = AKK / BKK**2
  223. A( K, K ) = AKK
  224. IF( K.LT.N ) THEN
  225. CALL SSCAL( N-K, ONE / BKK, A( K+1, K ), 1 )
  226. CT = -HALF*AKK
  227. CALL SAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
  228. CALL SSYR2( UPLO, N-K, -ONE, A( K+1, K ), 1,
  229. $ B( K+1, K ), 1, A( K+1, K+1 ), LDA )
  230. CALL SAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
  231. CALL STRSV( UPLO, 'No transpose', 'Non-unit', N-K,
  232. $ B( K+1, K+1 ), LDB, A( K+1, K ), 1 )
  233. END IF
  234. 20 CONTINUE
  235. END IF
  236. ELSE
  237. IF( UPPER ) THEN
  238. *
  239. * Compute U*A*U**T
  240. *
  241. DO 30 K = 1, N
  242. *
  243. * Update the upper triangle of A(1:k,1:k)
  244. *
  245. AKK = A( K, K )
  246. BKK = B( K, K )
  247. CALL STRMV( UPLO, 'No transpose', 'Non-unit', K-1, B,
  248. $ LDB, A( 1, K ), 1 )
  249. CT = HALF*AKK
  250. CALL SAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
  251. CALL SSYR2( UPLO, K-1, ONE, A( 1, K ), 1, B( 1, K ), 1,
  252. $ A, LDA )
  253. CALL SAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
  254. CALL SSCAL( K-1, BKK, A( 1, K ), 1 )
  255. A( K, K ) = AKK*BKK**2
  256. 30 CONTINUE
  257. ELSE
  258. *
  259. * Compute L**T *A*L
  260. *
  261. DO 40 K = 1, N
  262. *
  263. * Update the lower triangle of A(1:k,1:k)
  264. *
  265. AKK = A( K, K )
  266. BKK = B( K, K )
  267. CALL STRMV( UPLO, 'Transpose', 'Non-unit', K-1, B, LDB,
  268. $ A( K, 1 ), LDA )
  269. CT = HALF*AKK
  270. CALL SAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
  271. CALL SSYR2( UPLO, K-1, ONE, A( K, 1 ), LDA, B( K, 1 ),
  272. $ LDB, A, LDA )
  273. CALL SAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
  274. CALL SSCAL( K-1, BKK, A( K, 1 ), LDA )
  275. A( K, K ) = AKK*BKK**2
  276. 40 CONTINUE
  277. END IF
  278. END IF
  279. RETURN
  280. *
  281. * End of SSYGS2
  282. *
  283. END