|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544 |
- *> \brief \b SSYCONVF_ROOK
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SSYCONVF_ROOK + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyconvf_rook.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyconvf_rook.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyconvf_rook.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SSYCONVF_ROOK( UPLO, WAY, N, A, LDA, E, IPIV, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO, WAY
- * INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * REAL A( LDA, * ), E( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *> If parameter WAY = 'C':
- *> SSYCONVF_ROOK converts the factorization output format used in
- *> SSYTRF_ROOK provided on entry in parameter A into the factorization
- *> output format used in SSYTRF_RK (or SSYTRF_BK) that is stored
- *> on exit in parameters A and E. IPIV format for SSYTRF_ROOK and
- *> SSYTRF_RK (or SSYTRF_BK) is the same and is not converted.
- *>
- *> If parameter WAY = 'R':
- *> SSYCONVF_ROOK performs the conversion in reverse direction, i.e.
- *> converts the factorization output format used in SSYTRF_RK
- *> (or SSYTRF_BK) provided on entry in parameters A and E into
- *> the factorization output format used in SSYTRF_ROOK that is stored
- *> on exit in parameter A. IPIV format for SSYTRF_ROOK and
- *> SSYTRF_RK (or SSYTRF_BK) is the same and is not converted.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the details of the factorization are
- *> stored as an upper or lower triangular matrix A.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] WAY
- *> \verbatim
- *> WAY is CHARACTER*1
- *> = 'C': Convert
- *> = 'R': Revert
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *>
- *> 1) If WAY ='C':
- *>
- *> On entry, contains factorization details in format used in
- *> SSYTRF_ROOK:
- *> a) all elements of the symmetric block diagonal
- *> matrix D on the diagonal of A and on superdiagonal
- *> (or subdiagonal) of A, and
- *> b) If UPLO = 'U': multipliers used to obtain factor U
- *> in the superdiagonal part of A.
- *> If UPLO = 'L': multipliers used to obtain factor L
- *> in the superdiagonal part of A.
- *>
- *> On exit, contains factorization details in format used in
- *> SSYTRF_RK or SSYTRF_BK:
- *> a) ONLY diagonal elements of the symmetric block diagonal
- *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
- *> (superdiagonal (or subdiagonal) elements of D
- *> are stored on exit in array E), and
- *> b) If UPLO = 'U': factor U in the superdiagonal part of A.
- *> If UPLO = 'L': factor L in the subdiagonal part of A.
- *>
- *> 2) If WAY = 'R':
- *>
- *> On entry, contains factorization details in format used in
- *> SSYTRF_RK or SSYTRF_BK:
- *> a) ONLY diagonal elements of the symmetric block diagonal
- *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
- *> (superdiagonal (or subdiagonal) elements of D
- *> are stored on exit in array E), and
- *> b) If UPLO = 'U': factor U in the superdiagonal part of A.
- *> If UPLO = 'L': factor L in the subdiagonal part of A.
- *>
- *> On exit, contains factorization details in format used in
- *> SSYTRF_ROOK:
- *> a) all elements of the symmetric block diagonal
- *> matrix D on the diagonal of A and on superdiagonal
- *> (or subdiagonal) of A, and
- *> b) If UPLO = 'U': multipliers used to obtain factor U
- *> in the superdiagonal part of A.
- *> If UPLO = 'L': multipliers used to obtain factor L
- *> in the superdiagonal part of A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] E
- *> \verbatim
- *> E is REAL array, dimension (N)
- *>
- *> 1) If WAY ='C':
- *>
- *> On entry, just a workspace.
- *>
- *> On exit, contains the superdiagonal (or subdiagonal)
- *> elements of the symmetric block diagonal matrix D
- *> with 1-by-1 or 2-by-2 diagonal blocks, where
- *> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
- *> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
- *>
- *> 2) If WAY = 'R':
- *>
- *> On entry, contains the superdiagonal (or subdiagonal)
- *> elements of the symmetric block diagonal matrix D
- *> with 1-by-1 or 2-by-2 diagonal blocks, where
- *> If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
- *> If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
- *>
- *> On exit, is not changed
- *> \endverbatim
- *.
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> On entry, details of the interchanges and the block
- *> structure of D as determined:
- *> 1) by SSYTRF_ROOK, if WAY ='C';
- *> 2) by SSYTRF_RK (or SSYTRF_BK), if WAY ='R'.
- *> The IPIV format is the same for all these routines.
- *>
- *> On exit, is not changed.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2017
- *
- *> \ingroup singleSYcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> \verbatim
- *>
- *> November 2017, Igor Kozachenko,
- *> Computer Science Division,
- *> University of California, Berkeley
- *>
- *> \endverbatim
- * =====================================================================
- SUBROUTINE SSYCONVF_ROOK( UPLO, WAY, N, A, LDA, E, IPIV, INFO )
- *
- * -- LAPACK computational routine (version 3.8.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2017
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO, WAY
- INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- REAL A( LDA, * ), E( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO
- PARAMETER ( ZERO = 0.0E+0 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- *
- * .. External Subroutines ..
- EXTERNAL SSWAP, XERBLA
- * .. Local Scalars ..
- LOGICAL UPPER, CONVERT
- INTEGER I, IP, IP2
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- CONVERT = LSAME( WAY, 'C' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.CONVERT .AND. .NOT.LSAME( WAY, 'R' ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
-
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SSYCONVF_ROOK', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( UPPER ) THEN
- *
- * Begin A is UPPER
- *
- IF ( CONVERT ) THEN
- *
- * Convert A (A is upper)
- *
- *
- * Convert VALUE
- *
- * Assign superdiagonal entries of D to array E and zero out
- * corresponding entries in input storage A
- *
- I = N
- E( 1 ) = ZERO
- DO WHILE ( I.GT.1 )
- IF( IPIV( I ).LT.0 ) THEN
- E( I ) = A( I-1, I )
- E( I-1 ) = ZERO
- A( I-1, I ) = ZERO
- I = I - 1
- ELSE
- E( I ) = ZERO
- END IF
- I = I - 1
- END DO
- *
- * Convert PERMUTATIONS
- *
- * Apply permutations to submatrices of upper part of A
- * in factorization order where i decreases from N to 1
- *
- I = N
- DO WHILE ( I.GE.1 )
- IF( IPIV( I ).GT.0 ) THEN
- *
- * 1-by-1 pivot interchange
- *
- * Swap rows i and IPIV(i) in A(1:i,N-i:N)
- *
- IP = IPIV( I )
- IF( I.LT.N ) THEN
- IF( IP.NE.I ) THEN
- CALL SSWAP( N-I, A( I, I+1 ), LDA,
- $ A( IP, I+1 ), LDA )
- END IF
- END IF
- *
- ELSE
- *
- * 2-by-2 pivot interchange
- *
- * Swap rows i and IPIV(i) and i-1 and IPIV(i-1)
- * in A(1:i,N-i:N)
- *
- IP = -IPIV( I )
- IP2 = -IPIV( I-1 )
- IF( I.LT.N ) THEN
- IF( IP.NE.I ) THEN
- CALL SSWAP( N-I, A( I, I+1 ), LDA,
- $ A( IP, I+1 ), LDA )
- END IF
- IF( IP2.NE.(I-1) ) THEN
- CALL SSWAP( N-I, A( I-1, I+1 ), LDA,
- $ A( IP2, I+1 ), LDA )
- END IF
- END IF
- I = I - 1
- *
- END IF
- I = I - 1
- END DO
- *
- ELSE
- *
- * Revert A (A is upper)
- *
- *
- * Revert PERMUTATIONS
- *
- * Apply permutations to submatrices of upper part of A
- * in reverse factorization order where i increases from 1 to N
- *
- I = 1
- DO WHILE ( I.LE.N )
- IF( IPIV( I ).GT.0 ) THEN
- *
- * 1-by-1 pivot interchange
- *
- * Swap rows i and IPIV(i) in A(1:i,N-i:N)
- *
- IP = IPIV( I )
- IF( I.LT.N ) THEN
- IF( IP.NE.I ) THEN
- CALL SSWAP( N-I, A( IP, I+1 ), LDA,
- $ A( I, I+1 ), LDA )
- END IF
- END IF
- *
- ELSE
- *
- * 2-by-2 pivot interchange
- *
- * Swap rows i-1 and IPIV(i-1) and i and IPIV(i)
- * in A(1:i,N-i:N)
- *
- I = I + 1
- IP = -IPIV( I )
- IP2 = -IPIV( I-1 )
- IF( I.LT.N ) THEN
- IF( IP2.NE.(I-1) ) THEN
- CALL SSWAP( N-I, A( IP2, I+1 ), LDA,
- $ A( I-1, I+1 ), LDA )
- END IF
- IF( IP.NE.I ) THEN
- CALL SSWAP( N-I, A( IP, I+1 ), LDA,
- $ A( I, I+1 ), LDA )
- END IF
- END IF
- *
- END IF
- I = I + 1
- END DO
- *
- * Revert VALUE
- * Assign superdiagonal entries of D from array E to
- * superdiagonal entries of A.
- *
- I = N
- DO WHILE ( I.GT.1 )
- IF( IPIV( I ).LT.0 ) THEN
- A( I-1, I ) = E( I )
- I = I - 1
- END IF
- I = I - 1
- END DO
- *
- * End A is UPPER
- *
- END IF
- *
- ELSE
- *
- * Begin A is LOWER
- *
- IF ( CONVERT ) THEN
- *
- * Convert A (A is lower)
- *
- *
- * Convert VALUE
- * Assign subdiagonal entries of D to array E and zero out
- * corresponding entries in input storage A
- *
- I = 1
- E( N ) = ZERO
- DO WHILE ( I.LE.N )
- IF( I.LT.N .AND. IPIV(I).LT.0 ) THEN
- E( I ) = A( I+1, I )
- E( I+1 ) = ZERO
- A( I+1, I ) = ZERO
- I = I + 1
- ELSE
- E( I ) = ZERO
- END IF
- I = I + 1
- END DO
- *
- * Convert PERMUTATIONS
- *
- * Apply permutations to submatrices of lower part of A
- * in factorization order where i increases from 1 to N
- *
- I = 1
- DO WHILE ( I.LE.N )
- IF( IPIV( I ).GT.0 ) THEN
- *
- * 1-by-1 pivot interchange
- *
- * Swap rows i and IPIV(i) in A(i:N,1:i-1)
- *
- IP = IPIV( I )
- IF ( I.GT.1 ) THEN
- IF( IP.NE.I ) THEN
- CALL SSWAP( I-1, A( I, 1 ), LDA,
- $ A( IP, 1 ), LDA )
- END IF
- END IF
- *
- ELSE
- *
- * 2-by-2 pivot interchange
- *
- * Swap rows i and IPIV(i) and i+1 and IPIV(i+1)
- * in A(i:N,1:i-1)
- *
- IP = -IPIV( I )
- IP2 = -IPIV( I+1 )
- IF ( I.GT.1 ) THEN
- IF( IP.NE.I ) THEN
- CALL SSWAP( I-1, A( I, 1 ), LDA,
- $ A( IP, 1 ), LDA )
- END IF
- IF( IP2.NE.(I+1) ) THEN
- CALL SSWAP( I-1, A( I+1, 1 ), LDA,
- $ A( IP2, 1 ), LDA )
- END IF
- END IF
- I = I + 1
- *
- END IF
- I = I + 1
- END DO
- *
- ELSE
- *
- * Revert A (A is lower)
- *
- *
- * Revert PERMUTATIONS
- *
- * Apply permutations to submatrices of lower part of A
- * in reverse factorization order where i decreases from N to 1
- *
- I = N
- DO WHILE ( I.GE.1 )
- IF( IPIV( I ).GT.0 ) THEN
- *
- * 1-by-1 pivot interchange
- *
- * Swap rows i and IPIV(i) in A(i:N,1:i-1)
- *
- IP = IPIV( I )
- IF ( I.GT.1 ) THEN
- IF( IP.NE.I ) THEN
- CALL SSWAP( I-1, A( IP, 1 ), LDA,
- $ A( I, 1 ), LDA )
- END IF
- END IF
- *
- ELSE
- *
- * 2-by-2 pivot interchange
- *
- * Swap rows i+1 and IPIV(i+1) and i and IPIV(i)
- * in A(i:N,1:i-1)
- *
- I = I - 1
- IP = -IPIV( I )
- IP2 = -IPIV( I+1 )
- IF ( I.GT.1 ) THEN
- IF( IP2.NE.(I+1) ) THEN
- CALL SSWAP( I-1, A( IP2, 1 ), LDA,
- $ A( I+1, 1 ), LDA )
- END IF
- IF( IP.NE.I ) THEN
- CALL SSWAP( I-1, A( IP, 1 ), LDA,
- $ A( I, 1 ), LDA )
- END IF
- END IF
- *
- END IF
- I = I - 1
- END DO
- *
- * Revert VALUE
- * Assign subdiagonal entries of D from array E to
- * subgiagonal entries of A.
- *
- I = 1
- DO WHILE ( I.LE.N-1 )
- IF( IPIV( I ).LT.0 ) THEN
- A( I + 1, I ) = E( I )
- I = I + 1
- END IF
- I = I + 1
- END DO
- *
- END IF
- *
- * End A is LOWER
- *
- END IF
-
- RETURN
- *
- * End of SSYCONVF_ROOK
- *
- END
|