|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588 |
- *> \brief \b SLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the qd Array Z to high relative accuracy. Used by sbdsqr and sstegr.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLASQ2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLASQ2( N, Z, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, N
- * ..
- * .. Array Arguments ..
- * REAL Z( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLASQ2 computes all the eigenvalues of the symmetric positive
- *> definite tridiagonal matrix associated with the qd array Z to high
- *> relative accuracy are computed to high relative accuracy, in the
- *> absence of denormalization, underflow and overflow.
- *>
- *> To see the relation of Z to the tridiagonal matrix, let L be a
- *> unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and
- *> let U be an upper bidiagonal matrix with 1's above and diagonal
- *> Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
- *> symmetric tridiagonal to which it is similar.
- *>
- *> Note : SLASQ2 defines a logical variable, IEEE, which is true
- *> on machines which follow ieee-754 floating-point standard in their
- *> handling of infinities and NaNs, and false otherwise. This variable
- *> is passed to SLASQ3.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows and columns in the matrix. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] Z
- *> \verbatim
- *> Z is REAL array, dimension ( 4*N )
- *> On entry Z holds the qd array. On exit, entries 1 to N hold
- *> the eigenvalues in decreasing order, Z( 2*N+1 ) holds the
- *> trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If
- *> N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )
- *> holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of
- *> shifts that failed.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if the i-th argument is a scalar and had an illegal
- *> value, then INFO = -i, if the i-th argument is an
- *> array and the j-entry had an illegal value, then
- *> INFO = -(i*100+j)
- *> > 0: the algorithm failed
- *> = 1, a split was marked by a positive value in E
- *> = 2, current block of Z not diagonalized after 100*N
- *> iterations (in inner while loop). On exit Z holds
- *> a qd array with the same eigenvalues as the given Z.
- *> = 3, termination criterion of outer while loop not met
- *> (program created more than N unreduced blocks)
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup auxOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> Local Variables: I0:N0 defines a current unreduced segment of Z.
- *> The shifts are accumulated in SIGMA. Iteration count is in ITER.
- *> Ping-pong is controlled by PP (alternates between 0 and 1).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE SLASQ2( N, Z, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INFO, N
- * ..
- * .. Array Arguments ..
- REAL Z( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL CBIAS
- PARAMETER ( CBIAS = 1.50E0 )
- REAL ZERO, HALF, ONE, TWO, FOUR, HUNDRD
- PARAMETER ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0,
- $ TWO = 2.0E0, FOUR = 4.0E0, HUNDRD = 100.0E0 )
- * ..
- * .. Local Scalars ..
- LOGICAL IEEE
- INTEGER I0, I4, IINFO, IPN4, ITER, IWHILA, IWHILB, K,
- $ KMIN, N0, NBIG, NDIV, NFAIL, PP, SPLT, TTYPE,
- $ I1, N1
- REAL D, DEE, DEEMIN, DESIG, DMIN, DMIN1, DMIN2, DN,
- $ DN1, DN2, E, EMAX, EMIN, EPS, G, OLDEMN, QMAX,
- $ QMIN, S, SAFMIN, SIGMA, T, TAU, TEMP, TOL,
- $ TOL2, TRACE, ZMAX, TEMPE, TEMPQ
- * ..
- * .. External Subroutines ..
- EXTERNAL SLASQ3, SLASRT, XERBLA
- * ..
- * .. External Functions ..
- REAL SLAMCH
- EXTERNAL SLAMCH
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN, REAL, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments.
- * (in case SLASQ2 is not called by SLASQ1)
- *
- INFO = 0
- EPS = SLAMCH( 'Precision' )
- SAFMIN = SLAMCH( 'Safe minimum' )
- TOL = EPS*HUNDRD
- TOL2 = TOL**2
- *
- IF( N.LT.0 ) THEN
- INFO = -1
- CALL XERBLA( 'SLASQ2', 1 )
- RETURN
- ELSE IF( N.EQ.0 ) THEN
- RETURN
- ELSE IF( N.EQ.1 ) THEN
- *
- * 1-by-1 case.
- *
- IF( Z( 1 ).LT.ZERO ) THEN
- INFO = -201
- CALL XERBLA( 'SLASQ2', 2 )
- END IF
- RETURN
- ELSE IF( N.EQ.2 ) THEN
- *
- * 2-by-2 case.
- *
- IF( Z( 2 ).LT.ZERO .OR. Z( 3 ).LT.ZERO ) THEN
- INFO = -2
- CALL XERBLA( 'SLASQ2', 2 )
- RETURN
- ELSE IF( Z( 3 ).GT.Z( 1 ) ) THEN
- D = Z( 3 )
- Z( 3 ) = Z( 1 )
- Z( 1 ) = D
- END IF
- Z( 5 ) = Z( 1 ) + Z( 2 ) + Z( 3 )
- IF( Z( 2 ).GT.Z( 3 )*TOL2 ) THEN
- T = HALF*( ( Z( 1 )-Z( 3 ) )+Z( 2 ) )
- S = Z( 3 )*( Z( 2 ) / T )
- IF( S.LE.T ) THEN
- S = Z( 3 )*( Z( 2 ) / ( T*( ONE+SQRT( ONE+S / T ) ) ) )
- ELSE
- S = Z( 3 )*( Z( 2 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
- END IF
- T = Z( 1 ) + ( S+Z( 2 ) )
- Z( 3 ) = Z( 3 )*( Z( 1 ) / T )
- Z( 1 ) = T
- END IF
- Z( 2 ) = Z( 3 )
- Z( 6 ) = Z( 2 ) + Z( 1 )
- RETURN
- END IF
- *
- * Check for negative data and compute sums of q's and e's.
- *
- Z( 2*N ) = ZERO
- EMIN = Z( 2 )
- QMAX = ZERO
- ZMAX = ZERO
- D = ZERO
- E = ZERO
- *
- DO 10 K = 1, 2*( N-1 ), 2
- IF( Z( K ).LT.ZERO ) THEN
- INFO = -( 200+K )
- CALL XERBLA( 'SLASQ2', 2 )
- RETURN
- ELSE IF( Z( K+1 ).LT.ZERO ) THEN
- INFO = -( 200+K+1 )
- CALL XERBLA( 'SLASQ2', 2 )
- RETURN
- END IF
- D = D + Z( K )
- E = E + Z( K+1 )
- QMAX = MAX( QMAX, Z( K ) )
- EMIN = MIN( EMIN, Z( K+1 ) )
- ZMAX = MAX( QMAX, ZMAX, Z( K+1 ) )
- 10 CONTINUE
- IF( Z( 2*N-1 ).LT.ZERO ) THEN
- INFO = -( 200+2*N-1 )
- CALL XERBLA( 'SLASQ2', 2 )
- RETURN
- END IF
- D = D + Z( 2*N-1 )
- QMAX = MAX( QMAX, Z( 2*N-1 ) )
- ZMAX = MAX( QMAX, ZMAX )
- *
- * Check for diagonality.
- *
- IF( E.EQ.ZERO ) THEN
- DO 20 K = 2, N
- Z( K ) = Z( 2*K-1 )
- 20 CONTINUE
- CALL SLASRT( 'D', N, Z, IINFO )
- Z( 2*N-1 ) = D
- RETURN
- END IF
- *
- TRACE = D + E
- *
- * Check for zero data.
- *
- IF( TRACE.EQ.ZERO ) THEN
- Z( 2*N-1 ) = ZERO
- RETURN
- END IF
- *
- * Check whether the machine is IEEE conformable.
- *
- * IEEE = ILAENV( 10, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 .AND.
- * $ ILAENV( 11, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1
- *
- * [11/15/2008] The case IEEE=.TRUE. has a problem in single precision with
- * some the test matrices of type 16. The double precision code is fine.
- *
- IEEE = .FALSE.
- *
- * Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...).
- *
- DO 30 K = 2*N, 2, -2
- Z( 2*K ) = ZERO
- Z( 2*K-1 ) = Z( K )
- Z( 2*K-2 ) = ZERO
- Z( 2*K-3 ) = Z( K-1 )
- 30 CONTINUE
- *
- I0 = 1
- N0 = N
- *
- * Reverse the qd-array, if warranted.
- *
- IF( CBIAS*Z( 4*I0-3 ).LT.Z( 4*N0-3 ) ) THEN
- IPN4 = 4*( I0+N0 )
- DO 40 I4 = 4*I0, 2*( I0+N0-1 ), 4
- TEMP = Z( I4-3 )
- Z( I4-3 ) = Z( IPN4-I4-3 )
- Z( IPN4-I4-3 ) = TEMP
- TEMP = Z( I4-1 )
- Z( I4-1 ) = Z( IPN4-I4-5 )
- Z( IPN4-I4-5 ) = TEMP
- 40 CONTINUE
- END IF
- *
- * Initial split checking via dqd and Li's test.
- *
- PP = 0
- *
- DO 80 K = 1, 2
- *
- D = Z( 4*N0+PP-3 )
- DO 50 I4 = 4*( N0-1 ) + PP, 4*I0 + PP, -4
- IF( Z( I4-1 ).LE.TOL2*D ) THEN
- Z( I4-1 ) = -ZERO
- D = Z( I4-3 )
- ELSE
- D = Z( I4-3 )*( D / ( D+Z( I4-1 ) ) )
- END IF
- 50 CONTINUE
- *
- * dqd maps Z to ZZ plus Li's test.
- *
- EMIN = Z( 4*I0+PP+1 )
- D = Z( 4*I0+PP-3 )
- DO 60 I4 = 4*I0 + PP, 4*( N0-1 ) + PP, 4
- Z( I4-2*PP-2 ) = D + Z( I4-1 )
- IF( Z( I4-1 ).LE.TOL2*D ) THEN
- Z( I4-1 ) = -ZERO
- Z( I4-2*PP-2 ) = D
- Z( I4-2*PP ) = ZERO
- D = Z( I4+1 )
- ELSE IF( SAFMIN*Z( I4+1 ).LT.Z( I4-2*PP-2 ) .AND.
- $ SAFMIN*Z( I4-2*PP-2 ).LT.Z( I4+1 ) ) THEN
- TEMP = Z( I4+1 ) / Z( I4-2*PP-2 )
- Z( I4-2*PP ) = Z( I4-1 )*TEMP
- D = D*TEMP
- ELSE
- Z( I4-2*PP ) = Z( I4+1 )*( Z( I4-1 ) / Z( I4-2*PP-2 ) )
- D = Z( I4+1 )*( D / Z( I4-2*PP-2 ) )
- END IF
- EMIN = MIN( EMIN, Z( I4-2*PP ) )
- 60 CONTINUE
- Z( 4*N0-PP-2 ) = D
- *
- * Now find qmax.
- *
- QMAX = Z( 4*I0-PP-2 )
- DO 70 I4 = 4*I0 - PP + 2, 4*N0 - PP - 2, 4
- QMAX = MAX( QMAX, Z( I4 ) )
- 70 CONTINUE
- *
- * Prepare for the next iteration on K.
- *
- PP = 1 - PP
- 80 CONTINUE
- *
- * Initialise variables to pass to SLASQ3.
- *
- TTYPE = 0
- DMIN1 = ZERO
- DMIN2 = ZERO
- DN = ZERO
- DN1 = ZERO
- DN2 = ZERO
- G = ZERO
- TAU = ZERO
- *
- ITER = 2
- NFAIL = 0
- NDIV = 2*( N0-I0 )
- *
- DO 160 IWHILA = 1, N + 1
- IF( N0.LT.1 )
- $ GO TO 170
- *
- * While array unfinished do
- *
- * E(N0) holds the value of SIGMA when submatrix in I0:N0
- * splits from the rest of the array, but is negated.
- *
- DESIG = ZERO
- IF( N0.EQ.N ) THEN
- SIGMA = ZERO
- ELSE
- SIGMA = -Z( 4*N0-1 )
- END IF
- IF( SIGMA.LT.ZERO ) THEN
- INFO = 1
- RETURN
- END IF
- *
- * Find last unreduced submatrix's top index I0, find QMAX and
- * EMIN. Find Gershgorin-type bound if Q's much greater than E's.
- *
- EMAX = ZERO
- IF( N0.GT.I0 ) THEN
- EMIN = ABS( Z( 4*N0-5 ) )
- ELSE
- EMIN = ZERO
- END IF
- QMIN = Z( 4*N0-3 )
- QMAX = QMIN
- DO 90 I4 = 4*N0, 8, -4
- IF( Z( I4-5 ).LE.ZERO )
- $ GO TO 100
- IF( QMIN.GE.FOUR*EMAX ) THEN
- QMIN = MIN( QMIN, Z( I4-3 ) )
- EMAX = MAX( EMAX, Z( I4-5 ) )
- END IF
- QMAX = MAX( QMAX, Z( I4-7 )+Z( I4-5 ) )
- EMIN = MIN( EMIN, Z( I4-5 ) )
- 90 CONTINUE
- I4 = 4
- *
- 100 CONTINUE
- I0 = I4 / 4
- PP = 0
- *
- IF( N0-I0.GT.1 ) THEN
- DEE = Z( 4*I0-3 )
- DEEMIN = DEE
- KMIN = I0
- DO 110 I4 = 4*I0+1, 4*N0-3, 4
- DEE = Z( I4 )*( DEE /( DEE+Z( I4-2 ) ) )
- IF( DEE.LE.DEEMIN ) THEN
- DEEMIN = DEE
- KMIN = ( I4+3 )/4
- END IF
- 110 CONTINUE
- IF( (KMIN-I0)*2.LT.N0-KMIN .AND.
- $ DEEMIN.LE.HALF*Z(4*N0-3) ) THEN
- IPN4 = 4*( I0+N0 )
- PP = 2
- DO 120 I4 = 4*I0, 2*( I0+N0-1 ), 4
- TEMP = Z( I4-3 )
- Z( I4-3 ) = Z( IPN4-I4-3 )
- Z( IPN4-I4-3 ) = TEMP
- TEMP = Z( I4-2 )
- Z( I4-2 ) = Z( IPN4-I4-2 )
- Z( IPN4-I4-2 ) = TEMP
- TEMP = Z( I4-1 )
- Z( I4-1 ) = Z( IPN4-I4-5 )
- Z( IPN4-I4-5 ) = TEMP
- TEMP = Z( I4 )
- Z( I4 ) = Z( IPN4-I4-4 )
- Z( IPN4-I4-4 ) = TEMP
- 120 CONTINUE
- END IF
- END IF
- *
- * Put -(initial shift) into DMIN.
- *
- DMIN = -MAX( ZERO, QMIN-TWO*SQRT( QMIN )*SQRT( EMAX ) )
- *
- * Now I0:N0 is unreduced.
- * PP = 0 for ping, PP = 1 for pong.
- * PP = 2 indicates that flipping was applied to the Z array and
- * and that the tests for deflation upon entry in SLASQ3
- * should not be performed.
- *
- NBIG = 100*( N0-I0+1 )
- DO 140 IWHILB = 1, NBIG
- IF( I0.GT.N0 )
- $ GO TO 150
- *
- * While submatrix unfinished take a good dqds step.
- *
- CALL SLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
- $ ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
- $ DN2, G, TAU )
- *
- PP = 1 - PP
- *
- * When EMIN is very small check for splits.
- *
- IF( PP.EQ.0 .AND. N0-I0.GE.3 ) THEN
- IF( Z( 4*N0 ).LE.TOL2*QMAX .OR.
- $ Z( 4*N0-1 ).LE.TOL2*SIGMA ) THEN
- SPLT = I0 - 1
- QMAX = Z( 4*I0-3 )
- EMIN = Z( 4*I0-1 )
- OLDEMN = Z( 4*I0 )
- DO 130 I4 = 4*I0, 4*( N0-3 ), 4
- IF( Z( I4 ).LE.TOL2*Z( I4-3 ) .OR.
- $ Z( I4-1 ).LE.TOL2*SIGMA ) THEN
- Z( I4-1 ) = -SIGMA
- SPLT = I4 / 4
- QMAX = ZERO
- EMIN = Z( I4+3 )
- OLDEMN = Z( I4+4 )
- ELSE
- QMAX = MAX( QMAX, Z( I4+1 ) )
- EMIN = MIN( EMIN, Z( I4-1 ) )
- OLDEMN = MIN( OLDEMN, Z( I4 ) )
- END IF
- 130 CONTINUE
- Z( 4*N0-1 ) = EMIN
- Z( 4*N0 ) = OLDEMN
- I0 = SPLT + 1
- END IF
- END IF
- *
- 140 CONTINUE
- *
- INFO = 2
- *
- * Maximum number of iterations exceeded, restore the shift
- * SIGMA and place the new d's and e's in a qd array.
- * This might need to be done for several blocks
- *
- I1 = I0
- N1 = N0
- 145 CONTINUE
- TEMPQ = Z( 4*I0-3 )
- Z( 4*I0-3 ) = Z( 4*I0-3 ) + SIGMA
- DO K = I0+1, N0
- TEMPE = Z( 4*K-5 )
- Z( 4*K-5 ) = Z( 4*K-5 ) * (TEMPQ / Z( 4*K-7 ))
- TEMPQ = Z( 4*K-3 )
- Z( 4*K-3 ) = Z( 4*K-3 ) + SIGMA + TEMPE - Z( 4*K-5 )
- END DO
- *
- * Prepare to do this on the previous block if there is one
- *
- IF( I1.GT.1 ) THEN
- N1 = I1-1
- DO WHILE( ( I1.GE.2 ) .AND. ( Z(4*I1-5).GE.ZERO ) )
- I1 = I1 - 1
- END DO
- IF( I1.GE.1 ) THEN
- SIGMA = -Z(4*N1-1)
- GO TO 145
- END IF
- END IF
-
- DO K = 1, N
- Z( 2*K-1 ) = Z( 4*K-3 )
- *
- * Only the block 1..N0 is unfinished. The rest of the e's
- * must be essentially zero, although sometimes other data
- * has been stored in them.
- *
- IF( K.LT.N0 ) THEN
- Z( 2*K ) = Z( 4*K-1 )
- ELSE
- Z( 2*K ) = 0
- END IF
- END DO
- RETURN
- *
- * end IWHILB
- *
- 150 CONTINUE
- *
- 160 CONTINUE
- *
- INFO = 3
- RETURN
- *
- * end IWHILA
- *
- 170 CONTINUE
- *
- * Move q's to the front.
- *
- DO 180 K = 2, N
- Z( K ) = Z( 4*K-3 )
- 180 CONTINUE
- *
- * Sort and compute sum of eigenvalues.
- *
- CALL SLASRT( 'D', N, Z, IINFO )
- *
- E = ZERO
- DO 190 K = N, 1, -1
- E = E + Z( K )
- 190 CONTINUE
- *
- * Store trace, sum(eigenvalues) and information on performance.
- *
- Z( 2*N+1 ) = TRACE
- Z( 2*N+2 ) = E
- Z( 2*N+3 ) = REAL( ITER )
- Z( 2*N+4 ) = REAL( NDIV ) / REAL( N**2 )
- Z( 2*N+5 ) = HUNDRD*NFAIL / REAL( ITER )
- RETURN
- *
- * End of SLASQ2
- *
- END
|