You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasd0.f 9.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316
  1. *> \brief \b SLASD0 computes the singular values of a real upper bidiagonal n-by-m matrix B with diagonal d and off-diagonal e. Used by sbdsdc.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLASD0 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd0.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd0.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd0.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK,
  22. * WORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER INFO, LDU, LDVT, N, SMLSIZ, SQRE
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IWORK( * )
  29. * REAL D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),
  30. * $ WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> Using a divide and conquer approach, SLASD0 computes the singular
  40. *> value decomposition (SVD) of a real upper bidiagonal N-by-M
  41. *> matrix B with diagonal D and offdiagonal E, where M = N + SQRE.
  42. *> The algorithm computes orthogonal matrices U and VT such that
  43. *> B = U * S * VT. The singular values S are overwritten on D.
  44. *>
  45. *> A related subroutine, SLASDA, computes only the singular values,
  46. *> and optionally, the singular vectors in compact form.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] N
  53. *> \verbatim
  54. *> N is INTEGER
  55. *> On entry, the row dimension of the upper bidiagonal matrix.
  56. *> This is also the dimension of the main diagonal array D.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] SQRE
  60. *> \verbatim
  61. *> SQRE is INTEGER
  62. *> Specifies the column dimension of the bidiagonal matrix.
  63. *> = 0: The bidiagonal matrix has column dimension M = N;
  64. *> = 1: The bidiagonal matrix has column dimension M = N+1;
  65. *> \endverbatim
  66. *>
  67. *> \param[in,out] D
  68. *> \verbatim
  69. *> D is REAL array, dimension (N)
  70. *> On entry D contains the main diagonal of the bidiagonal
  71. *> matrix.
  72. *> On exit D, if INFO = 0, contains its singular values.
  73. *> \endverbatim
  74. *>
  75. *> \param[in,out] E
  76. *> \verbatim
  77. *> E is REAL array, dimension (M-1)
  78. *> Contains the subdiagonal entries of the bidiagonal matrix.
  79. *> On exit, E has been destroyed.
  80. *> \endverbatim
  81. *>
  82. *> \param[out] U
  83. *> \verbatim
  84. *> U is REAL array, dimension (LDU, N)
  85. *> On exit, U contains the left singular vectors.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] LDU
  89. *> \verbatim
  90. *> LDU is INTEGER
  91. *> On entry, leading dimension of U.
  92. *> \endverbatim
  93. *>
  94. *> \param[out] VT
  95. *> \verbatim
  96. *> VT is REAL array, dimension (LDVT, M)
  97. *> On exit, VT**T contains the right singular vectors.
  98. *> \endverbatim
  99. *>
  100. *> \param[in] LDVT
  101. *> \verbatim
  102. *> LDVT is INTEGER
  103. *> On entry, leading dimension of VT.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] SMLSIZ
  107. *> \verbatim
  108. *> SMLSIZ is INTEGER
  109. *> On entry, maximum size of the subproblems at the
  110. *> bottom of the computation tree.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] IWORK
  114. *> \verbatim
  115. *> IWORK is INTEGER array, dimension (8*N)
  116. *> \endverbatim
  117. *>
  118. *> \param[out] WORK
  119. *> \verbatim
  120. *> WORK is REAL array, dimension (3*M**2+2*M)
  121. *> \endverbatim
  122. *>
  123. *> \param[out] INFO
  124. *> \verbatim
  125. *> INFO is INTEGER
  126. *> = 0: successful exit.
  127. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  128. *> > 0: if INFO = 1, a singular value did not converge
  129. *> \endverbatim
  130. *
  131. * Authors:
  132. * ========
  133. *
  134. *> \author Univ. of Tennessee
  135. *> \author Univ. of California Berkeley
  136. *> \author Univ. of Colorado Denver
  137. *> \author NAG Ltd.
  138. *
  139. *> \date June 2017
  140. *
  141. *> \ingroup OTHERauxiliary
  142. *
  143. *> \par Contributors:
  144. * ==================
  145. *>
  146. *> Ming Gu and Huan Ren, Computer Science Division, University of
  147. *> California at Berkeley, USA
  148. *>
  149. * =====================================================================
  150. SUBROUTINE SLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK,
  151. $ WORK, INFO )
  152. *
  153. * -- LAPACK auxiliary routine (version 3.7.1) --
  154. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  155. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  156. * June 2017
  157. *
  158. * .. Scalar Arguments ..
  159. INTEGER INFO, LDU, LDVT, N, SMLSIZ, SQRE
  160. * ..
  161. * .. Array Arguments ..
  162. INTEGER IWORK( * )
  163. REAL D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),
  164. $ WORK( * )
  165. * ..
  166. *
  167. * =====================================================================
  168. *
  169. * .. Local Scalars ..
  170. INTEGER I, I1, IC, IDXQ, IDXQC, IM1, INODE, ITEMP, IWK,
  171. $ J, LF, LL, LVL, M, NCC, ND, NDB1, NDIML, NDIMR,
  172. $ NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQREI
  173. REAL ALPHA, BETA
  174. * ..
  175. * .. External Subroutines ..
  176. EXTERNAL SLASD1, SLASDQ, SLASDT, XERBLA
  177. * ..
  178. * .. Executable Statements ..
  179. *
  180. * Test the input parameters.
  181. *
  182. INFO = 0
  183. *
  184. IF( N.LT.0 ) THEN
  185. INFO = -1
  186. ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
  187. INFO = -2
  188. END IF
  189. *
  190. M = N + SQRE
  191. *
  192. IF( LDU.LT.N ) THEN
  193. INFO = -6
  194. ELSE IF( LDVT.LT.M ) THEN
  195. INFO = -8
  196. ELSE IF( SMLSIZ.LT.3 ) THEN
  197. INFO = -9
  198. END IF
  199. IF( INFO.NE.0 ) THEN
  200. CALL XERBLA( 'SLASD0', -INFO )
  201. RETURN
  202. END IF
  203. *
  204. * If the input matrix is too small, call SLASDQ to find the SVD.
  205. *
  206. IF( N.LE.SMLSIZ ) THEN
  207. CALL SLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDVT, U, LDU, U,
  208. $ LDU, WORK, INFO )
  209. RETURN
  210. END IF
  211. *
  212. * Set up the computation tree.
  213. *
  214. INODE = 1
  215. NDIML = INODE + N
  216. NDIMR = NDIML + N
  217. IDXQ = NDIMR + N
  218. IWK = IDXQ + N
  219. CALL SLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
  220. $ IWORK( NDIMR ), SMLSIZ )
  221. *
  222. * For the nodes on bottom level of the tree, solve
  223. * their subproblems by SLASDQ.
  224. *
  225. NDB1 = ( ND+1 ) / 2
  226. NCC = 0
  227. DO 30 I = NDB1, ND
  228. *
  229. * IC : center row of each node
  230. * NL : number of rows of left subproblem
  231. * NR : number of rows of right subproblem
  232. * NLF: starting row of the left subproblem
  233. * NRF: starting row of the right subproblem
  234. *
  235. I1 = I - 1
  236. IC = IWORK( INODE+I1 )
  237. NL = IWORK( NDIML+I1 )
  238. NLP1 = NL + 1
  239. NR = IWORK( NDIMR+I1 )
  240. NRP1 = NR + 1
  241. NLF = IC - NL
  242. NRF = IC + 1
  243. SQREI = 1
  244. CALL SLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ), E( NLF ),
  245. $ VT( NLF, NLF ), LDVT, U( NLF, NLF ), LDU,
  246. $ U( NLF, NLF ), LDU, WORK, INFO )
  247. IF( INFO.NE.0 ) THEN
  248. RETURN
  249. END IF
  250. ITEMP = IDXQ + NLF - 2
  251. DO 10 J = 1, NL
  252. IWORK( ITEMP+J ) = J
  253. 10 CONTINUE
  254. IF( I.EQ.ND ) THEN
  255. SQREI = SQRE
  256. ELSE
  257. SQREI = 1
  258. END IF
  259. NRP1 = NR + SQREI
  260. CALL SLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ), E( NRF ),
  261. $ VT( NRF, NRF ), LDVT, U( NRF, NRF ), LDU,
  262. $ U( NRF, NRF ), LDU, WORK, INFO )
  263. IF( INFO.NE.0 ) THEN
  264. RETURN
  265. END IF
  266. ITEMP = IDXQ + IC
  267. DO 20 J = 1, NR
  268. IWORK( ITEMP+J-1 ) = J
  269. 20 CONTINUE
  270. 30 CONTINUE
  271. *
  272. * Now conquer each subproblem bottom-up.
  273. *
  274. DO 50 LVL = NLVL, 1, -1
  275. *
  276. * Find the first node LF and last node LL on the
  277. * current level LVL.
  278. *
  279. IF( LVL.EQ.1 ) THEN
  280. LF = 1
  281. LL = 1
  282. ELSE
  283. LF = 2**( LVL-1 )
  284. LL = 2*LF - 1
  285. END IF
  286. DO 40 I = LF, LL
  287. IM1 = I - 1
  288. IC = IWORK( INODE+IM1 )
  289. NL = IWORK( NDIML+IM1 )
  290. NR = IWORK( NDIMR+IM1 )
  291. NLF = IC - NL
  292. IF( ( SQRE.EQ.0 ) .AND. ( I.EQ.LL ) ) THEN
  293. SQREI = SQRE
  294. ELSE
  295. SQREI = 1
  296. END IF
  297. IDXQC = IDXQ + NLF - 1
  298. ALPHA = D( IC )
  299. BETA = E( IC )
  300. CALL SLASD1( NL, NR, SQREI, D( NLF ), ALPHA, BETA,
  301. $ U( NLF, NLF ), LDU, VT( NLF, NLF ), LDVT,
  302. $ IWORK( IDXQC ), IWORK( IWK ), WORK, INFO )
  303. *
  304. * Report the possible convergence failure.
  305. *
  306. IF( INFO.NE.0 ) THEN
  307. RETURN
  308. END IF
  309. 40 CONTINUE
  310. 50 CONTINUE
  311. *
  312. RETURN
  313. *
  314. * End of SLASD0
  315. *
  316. END