You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsygst.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321
  1. *> \brief \b DSYGST
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSYGST + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygst.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygst.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygst.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, ITYPE, LDA, LDB, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION A( LDA, * ), B( LDB, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DSYGST reduces a real symmetric-definite generalized eigenproblem
  38. *> to standard form.
  39. *>
  40. *> If ITYPE = 1, the problem is A*x = lambda*B*x,
  41. *> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
  42. *>
  43. *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
  44. *> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
  45. *>
  46. *> B must have been previously factorized as U**T*U or L*L**T by DPOTRF.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] ITYPE
  53. *> \verbatim
  54. *> ITYPE is INTEGER
  55. *> = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
  56. *> = 2 or 3: compute U*A*U**T or L**T*A*L.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] UPLO
  60. *> \verbatim
  61. *> UPLO is CHARACTER*1
  62. *> = 'U': Upper triangle of A is stored and B is factored as
  63. *> U**T*U;
  64. *> = 'L': Lower triangle of A is stored and B is factored as
  65. *> L*L**T.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] N
  69. *> \verbatim
  70. *> N is INTEGER
  71. *> The order of the matrices A and B. N >= 0.
  72. *> \endverbatim
  73. *>
  74. *> \param[in,out] A
  75. *> \verbatim
  76. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  77. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  78. *> N-by-N upper triangular part of A contains the upper
  79. *> triangular part of the matrix A, and the strictly lower
  80. *> triangular part of A is not referenced. If UPLO = 'L', the
  81. *> leading N-by-N lower triangular part of A contains the lower
  82. *> triangular part of the matrix A, and the strictly upper
  83. *> triangular part of A is not referenced.
  84. *>
  85. *> On exit, if INFO = 0, the transformed matrix, stored in the
  86. *> same format as A.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDA
  90. *> \verbatim
  91. *> LDA is INTEGER
  92. *> The leading dimension of the array A. LDA >= max(1,N).
  93. *> \endverbatim
  94. *>
  95. *> \param[in] B
  96. *> \verbatim
  97. *> B is DOUBLE PRECISION array, dimension (LDB,N)
  98. *> The triangular factor from the Cholesky factorization of B,
  99. *> as returned by DPOTRF.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] LDB
  103. *> \verbatim
  104. *> LDB is INTEGER
  105. *> The leading dimension of the array B. LDB >= max(1,N).
  106. *> \endverbatim
  107. *>
  108. *> \param[out] INFO
  109. *> \verbatim
  110. *> INFO is INTEGER
  111. *> = 0: successful exit
  112. *> < 0: if INFO = -i, the i-th argument had an illegal value
  113. *> \endverbatim
  114. *
  115. * Authors:
  116. * ========
  117. *
  118. *> \author Univ. of Tennessee
  119. *> \author Univ. of California Berkeley
  120. *> \author Univ. of Colorado Denver
  121. *> \author NAG Ltd.
  122. *
  123. *> \date December 2016
  124. *
  125. *> \ingroup doubleSYcomputational
  126. *
  127. * =====================================================================
  128. SUBROUTINE DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  129. *
  130. * -- LAPACK computational routine (version 3.7.0) --
  131. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  132. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  133. * December 2016
  134. *
  135. * .. Scalar Arguments ..
  136. CHARACTER UPLO
  137. INTEGER INFO, ITYPE, LDA, LDB, N
  138. * ..
  139. * .. Array Arguments ..
  140. DOUBLE PRECISION A( LDA, * ), B( LDB, * )
  141. * ..
  142. *
  143. * =====================================================================
  144. *
  145. * .. Parameters ..
  146. DOUBLE PRECISION ONE, HALF
  147. PARAMETER ( ONE = 1.0D0, HALF = 0.5D0 )
  148. * ..
  149. * .. Local Scalars ..
  150. LOGICAL UPPER
  151. INTEGER K, KB, NB
  152. * ..
  153. * .. External Subroutines ..
  154. EXTERNAL DSYGS2, DSYMM, DSYR2K, DTRMM, DTRSM, XERBLA
  155. * ..
  156. * .. Intrinsic Functions ..
  157. INTRINSIC MAX, MIN
  158. * ..
  159. * .. External Functions ..
  160. LOGICAL LSAME
  161. INTEGER ILAENV
  162. EXTERNAL LSAME, ILAENV
  163. * ..
  164. * .. Executable Statements ..
  165. *
  166. * Test the input parameters.
  167. *
  168. INFO = 0
  169. UPPER = LSAME( UPLO, 'U' )
  170. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  171. INFO = -1
  172. ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  173. INFO = -2
  174. ELSE IF( N.LT.0 ) THEN
  175. INFO = -3
  176. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  177. INFO = -5
  178. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  179. INFO = -7
  180. END IF
  181. IF( INFO.NE.0 ) THEN
  182. CALL XERBLA( 'DSYGST', -INFO )
  183. RETURN
  184. END IF
  185. *
  186. * Quick return if possible
  187. *
  188. IF( N.EQ.0 )
  189. $ RETURN
  190. *
  191. * Determine the block size for this environment.
  192. *
  193. NB = ILAENV( 1, 'DSYGST', UPLO, N, -1, -1, -1 )
  194. *
  195. IF( NB.LE.1 .OR. NB.GE.N ) THEN
  196. *
  197. * Use unblocked code
  198. *
  199. CALL DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  200. ELSE
  201. *
  202. * Use blocked code
  203. *
  204. IF( ITYPE.EQ.1 ) THEN
  205. IF( UPPER ) THEN
  206. *
  207. * Compute inv(U**T)*A*inv(U)
  208. *
  209. DO 10 K = 1, N, NB
  210. KB = MIN( N-K+1, NB )
  211. *
  212. * Update the upper triangle of A(k:n,k:n)
  213. *
  214. CALL DSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
  215. $ B( K, K ), LDB, INFO )
  216. IF( K+KB.LE.N ) THEN
  217. CALL DTRSM( 'Left', UPLO, 'Transpose', 'Non-unit',
  218. $ KB, N-K-KB+1, ONE, B( K, K ), LDB,
  219. $ A( K, K+KB ), LDA )
  220. CALL DSYMM( 'Left', UPLO, KB, N-K-KB+1, -HALF,
  221. $ A( K, K ), LDA, B( K, K+KB ), LDB, ONE,
  222. $ A( K, K+KB ), LDA )
  223. CALL DSYR2K( UPLO, 'Transpose', N-K-KB+1, KB, -ONE,
  224. $ A( K, K+KB ), LDA, B( K, K+KB ), LDB,
  225. $ ONE, A( K+KB, K+KB ), LDA )
  226. CALL DSYMM( 'Left', UPLO, KB, N-K-KB+1, -HALF,
  227. $ A( K, K ), LDA, B( K, K+KB ), LDB, ONE,
  228. $ A( K, K+KB ), LDA )
  229. CALL DTRSM( 'Right', UPLO, 'No transpose',
  230. $ 'Non-unit', KB, N-K-KB+1, ONE,
  231. $ B( K+KB, K+KB ), LDB, A( K, K+KB ),
  232. $ LDA )
  233. END IF
  234. 10 CONTINUE
  235. ELSE
  236. *
  237. * Compute inv(L)*A*inv(L**T)
  238. *
  239. DO 20 K = 1, N, NB
  240. KB = MIN( N-K+1, NB )
  241. *
  242. * Update the lower triangle of A(k:n,k:n)
  243. *
  244. CALL DSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
  245. $ B( K, K ), LDB, INFO )
  246. IF( K+KB.LE.N ) THEN
  247. CALL DTRSM( 'Right', UPLO, 'Transpose', 'Non-unit',
  248. $ N-K-KB+1, KB, ONE, B( K, K ), LDB,
  249. $ A( K+KB, K ), LDA )
  250. CALL DSYMM( 'Right', UPLO, N-K-KB+1, KB, -HALF,
  251. $ A( K, K ), LDA, B( K+KB, K ), LDB, ONE,
  252. $ A( K+KB, K ), LDA )
  253. CALL DSYR2K( UPLO, 'No transpose', N-K-KB+1, KB,
  254. $ -ONE, A( K+KB, K ), LDA, B( K+KB, K ),
  255. $ LDB, ONE, A( K+KB, K+KB ), LDA )
  256. CALL DSYMM( 'Right', UPLO, N-K-KB+1, KB, -HALF,
  257. $ A( K, K ), LDA, B( K+KB, K ), LDB, ONE,
  258. $ A( K+KB, K ), LDA )
  259. CALL DTRSM( 'Left', UPLO, 'No transpose',
  260. $ 'Non-unit', N-K-KB+1, KB, ONE,
  261. $ B( K+KB, K+KB ), LDB, A( K+KB, K ),
  262. $ LDA )
  263. END IF
  264. 20 CONTINUE
  265. END IF
  266. ELSE
  267. IF( UPPER ) THEN
  268. *
  269. * Compute U*A*U**T
  270. *
  271. DO 30 K = 1, N, NB
  272. KB = MIN( N-K+1, NB )
  273. *
  274. * Update the upper triangle of A(1:k+kb-1,1:k+kb-1)
  275. *
  276. CALL DTRMM( 'Left', UPLO, 'No transpose', 'Non-unit',
  277. $ K-1, KB, ONE, B, LDB, A( 1, K ), LDA )
  278. CALL DSYMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ),
  279. $ LDA, B( 1, K ), LDB, ONE, A( 1, K ), LDA )
  280. CALL DSYR2K( UPLO, 'No transpose', K-1, KB, ONE,
  281. $ A( 1, K ), LDA, B( 1, K ), LDB, ONE, A,
  282. $ LDA )
  283. CALL DSYMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ),
  284. $ LDA, B( 1, K ), LDB, ONE, A( 1, K ), LDA )
  285. CALL DTRMM( 'Right', UPLO, 'Transpose', 'Non-unit',
  286. $ K-1, KB, ONE, B( K, K ), LDB, A( 1, K ),
  287. $ LDA )
  288. CALL DSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
  289. $ B( K, K ), LDB, INFO )
  290. 30 CONTINUE
  291. ELSE
  292. *
  293. * Compute L**T*A*L
  294. *
  295. DO 40 K = 1, N, NB
  296. KB = MIN( N-K+1, NB )
  297. *
  298. * Update the lower triangle of A(1:k+kb-1,1:k+kb-1)
  299. *
  300. CALL DTRMM( 'Right', UPLO, 'No transpose', 'Non-unit',
  301. $ KB, K-1, ONE, B, LDB, A( K, 1 ), LDA )
  302. CALL DSYMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ),
  303. $ LDA, B( K, 1 ), LDB, ONE, A( K, 1 ), LDA )
  304. CALL DSYR2K( UPLO, 'Transpose', K-1, KB, ONE,
  305. $ A( K, 1 ), LDA, B( K, 1 ), LDB, ONE, A,
  306. $ LDA )
  307. CALL DSYMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ),
  308. $ LDA, B( K, 1 ), LDB, ONE, A( K, 1 ), LDA )
  309. CALL DTRMM( 'Left', UPLO, 'Transpose', 'Non-unit', KB,
  310. $ K-1, ONE, B( K, K ), LDB, A( K, 1 ), LDA )
  311. CALL DSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
  312. $ B( K, K ), LDB, INFO )
  313. 40 CONTINUE
  314. END IF
  315. END IF
  316. END IF
  317. RETURN
  318. *
  319. * End of DSYGST
  320. *
  321. END