You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dpprfs.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421
  1. *> \brief \b DPPRFS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DPPRFS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpprfs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpprfs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpprfs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR,
  22. * BERR, WORK, IWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER INFO, LDB, LDX, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * )
  30. * DOUBLE PRECISION AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
  31. * $ FERR( * ), WORK( * ), X( LDX, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> DPPRFS improves the computed solution to a system of linear
  41. *> equations when the coefficient matrix is symmetric positive definite
  42. *> and packed, and provides error bounds and backward error estimates
  43. *> for the solution.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] UPLO
  50. *> \verbatim
  51. *> UPLO is CHARACTER*1
  52. *> = 'U': Upper triangle of A is stored;
  53. *> = 'L': Lower triangle of A is stored.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The order of the matrix A. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] NRHS
  63. *> \verbatim
  64. *> NRHS is INTEGER
  65. *> The number of right hand sides, i.e., the number of columns
  66. *> of the matrices B and X. NRHS >= 0.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] AP
  70. *> \verbatim
  71. *> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
  72. *> The upper or lower triangle of the symmetric matrix A, packed
  73. *> columnwise in a linear array. The j-th column of A is stored
  74. *> in the array AP as follows:
  75. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  76. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] AFP
  80. *> \verbatim
  81. *> AFP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
  82. *> The triangular factor U or L from the Cholesky factorization
  83. *> A = U**T*U or A = L*L**T, as computed by DPPTRF/ZPPTRF,
  84. *> packed columnwise in a linear array in the same format as A
  85. *> (see AP).
  86. *> \endverbatim
  87. *>
  88. *> \param[in] B
  89. *> \verbatim
  90. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  91. *> The right hand side matrix B.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LDB
  95. *> \verbatim
  96. *> LDB is INTEGER
  97. *> The leading dimension of the array B. LDB >= max(1,N).
  98. *> \endverbatim
  99. *>
  100. *> \param[in,out] X
  101. *> \verbatim
  102. *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  103. *> On entry, the solution matrix X, as computed by DPPTRS.
  104. *> On exit, the improved solution matrix X.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] LDX
  108. *> \verbatim
  109. *> LDX is INTEGER
  110. *> The leading dimension of the array X. LDX >= max(1,N).
  111. *> \endverbatim
  112. *>
  113. *> \param[out] FERR
  114. *> \verbatim
  115. *> FERR is DOUBLE PRECISION array, dimension (NRHS)
  116. *> The estimated forward error bound for each solution vector
  117. *> X(j) (the j-th column of the solution matrix X).
  118. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  119. *> is an estimated upper bound for the magnitude of the largest
  120. *> element in (X(j) - XTRUE) divided by the magnitude of the
  121. *> largest element in X(j). The estimate is as reliable as
  122. *> the estimate for RCOND, and is almost always a slight
  123. *> overestimate of the true error.
  124. *> \endverbatim
  125. *>
  126. *> \param[out] BERR
  127. *> \verbatim
  128. *> BERR is DOUBLE PRECISION array, dimension (NRHS)
  129. *> The componentwise relative backward error of each solution
  130. *> vector X(j) (i.e., the smallest relative change in
  131. *> any element of A or B that makes X(j) an exact solution).
  132. *> \endverbatim
  133. *>
  134. *> \param[out] WORK
  135. *> \verbatim
  136. *> WORK is DOUBLE PRECISION array, dimension (3*N)
  137. *> \endverbatim
  138. *>
  139. *> \param[out] IWORK
  140. *> \verbatim
  141. *> IWORK is INTEGER array, dimension (N)
  142. *> \endverbatim
  143. *>
  144. *> \param[out] INFO
  145. *> \verbatim
  146. *> INFO is INTEGER
  147. *> = 0: successful exit
  148. *> < 0: if INFO = -i, the i-th argument had an illegal value
  149. *> \endverbatim
  150. *
  151. *> \par Internal Parameters:
  152. * =========================
  153. *>
  154. *> \verbatim
  155. *> ITMAX is the maximum number of steps of iterative refinement.
  156. *> \endverbatim
  157. *
  158. * Authors:
  159. * ========
  160. *
  161. *> \author Univ. of Tennessee
  162. *> \author Univ. of California Berkeley
  163. *> \author Univ. of Colorado Denver
  164. *> \author NAG Ltd.
  165. *
  166. *> \date December 2016
  167. *
  168. *> \ingroup doubleOTHERcomputational
  169. *
  170. * =====================================================================
  171. SUBROUTINE DPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR,
  172. $ BERR, WORK, IWORK, INFO )
  173. *
  174. * -- LAPACK computational routine (version 3.7.0) --
  175. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  176. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  177. * December 2016
  178. *
  179. * .. Scalar Arguments ..
  180. CHARACTER UPLO
  181. INTEGER INFO, LDB, LDX, N, NRHS
  182. * ..
  183. * .. Array Arguments ..
  184. INTEGER IWORK( * )
  185. DOUBLE PRECISION AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
  186. $ FERR( * ), WORK( * ), X( LDX, * )
  187. * ..
  188. *
  189. * =====================================================================
  190. *
  191. * .. Parameters ..
  192. INTEGER ITMAX
  193. PARAMETER ( ITMAX = 5 )
  194. DOUBLE PRECISION ZERO
  195. PARAMETER ( ZERO = 0.0D+0 )
  196. DOUBLE PRECISION ONE
  197. PARAMETER ( ONE = 1.0D+0 )
  198. DOUBLE PRECISION TWO
  199. PARAMETER ( TWO = 2.0D+0 )
  200. DOUBLE PRECISION THREE
  201. PARAMETER ( THREE = 3.0D+0 )
  202. * ..
  203. * .. Local Scalars ..
  204. LOGICAL UPPER
  205. INTEGER COUNT, I, IK, J, K, KASE, KK, NZ
  206. DOUBLE PRECISION EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  207. * ..
  208. * .. Local Arrays ..
  209. INTEGER ISAVE( 3 )
  210. * ..
  211. * .. External Subroutines ..
  212. EXTERNAL DAXPY, DCOPY, DLACN2, DPPTRS, DSPMV, XERBLA
  213. * ..
  214. * .. Intrinsic Functions ..
  215. INTRINSIC ABS, MAX
  216. * ..
  217. * .. External Functions ..
  218. LOGICAL LSAME
  219. DOUBLE PRECISION DLAMCH
  220. EXTERNAL LSAME, DLAMCH
  221. * ..
  222. * .. Executable Statements ..
  223. *
  224. * Test the input parameters.
  225. *
  226. INFO = 0
  227. UPPER = LSAME( UPLO, 'U' )
  228. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  229. INFO = -1
  230. ELSE IF( N.LT.0 ) THEN
  231. INFO = -2
  232. ELSE IF( NRHS.LT.0 ) THEN
  233. INFO = -3
  234. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  235. INFO = -7
  236. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  237. INFO = -9
  238. END IF
  239. IF( INFO.NE.0 ) THEN
  240. CALL XERBLA( 'DPPRFS', -INFO )
  241. RETURN
  242. END IF
  243. *
  244. * Quick return if possible
  245. *
  246. IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  247. DO 10 J = 1, NRHS
  248. FERR( J ) = ZERO
  249. BERR( J ) = ZERO
  250. 10 CONTINUE
  251. RETURN
  252. END IF
  253. *
  254. * NZ = maximum number of nonzero elements in each row of A, plus 1
  255. *
  256. NZ = N + 1
  257. EPS = DLAMCH( 'Epsilon' )
  258. SAFMIN = DLAMCH( 'Safe minimum' )
  259. SAFE1 = NZ*SAFMIN
  260. SAFE2 = SAFE1 / EPS
  261. *
  262. * Do for each right hand side
  263. *
  264. DO 140 J = 1, NRHS
  265. *
  266. COUNT = 1
  267. LSTRES = THREE
  268. 20 CONTINUE
  269. *
  270. * Loop until stopping criterion is satisfied.
  271. *
  272. * Compute residual R = B - A * X
  273. *
  274. CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
  275. CALL DSPMV( UPLO, N, -ONE, AP, X( 1, J ), 1, ONE, WORK( N+1 ),
  276. $ 1 )
  277. *
  278. * Compute componentwise relative backward error from formula
  279. *
  280. * max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  281. *
  282. * where abs(Z) is the componentwise absolute value of the matrix
  283. * or vector Z. If the i-th component of the denominator is less
  284. * than SAFE2, then SAFE1 is added to the i-th components of the
  285. * numerator and denominator before dividing.
  286. *
  287. DO 30 I = 1, N
  288. WORK( I ) = ABS( B( I, J ) )
  289. 30 CONTINUE
  290. *
  291. * Compute abs(A)*abs(X) + abs(B).
  292. *
  293. KK = 1
  294. IF( UPPER ) THEN
  295. DO 50 K = 1, N
  296. S = ZERO
  297. XK = ABS( X( K, J ) )
  298. IK = KK
  299. DO 40 I = 1, K - 1
  300. WORK( I ) = WORK( I ) + ABS( AP( IK ) )*XK
  301. S = S + ABS( AP( IK ) )*ABS( X( I, J ) )
  302. IK = IK + 1
  303. 40 CONTINUE
  304. WORK( K ) = WORK( K ) + ABS( AP( KK+K-1 ) )*XK + S
  305. KK = KK + K
  306. 50 CONTINUE
  307. ELSE
  308. DO 70 K = 1, N
  309. S = ZERO
  310. XK = ABS( X( K, J ) )
  311. WORK( K ) = WORK( K ) + ABS( AP( KK ) )*XK
  312. IK = KK + 1
  313. DO 60 I = K + 1, N
  314. WORK( I ) = WORK( I ) + ABS( AP( IK ) )*XK
  315. S = S + ABS( AP( IK ) )*ABS( X( I, J ) )
  316. IK = IK + 1
  317. 60 CONTINUE
  318. WORK( K ) = WORK( K ) + S
  319. KK = KK + ( N-K+1 )
  320. 70 CONTINUE
  321. END IF
  322. S = ZERO
  323. DO 80 I = 1, N
  324. IF( WORK( I ).GT.SAFE2 ) THEN
  325. S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  326. ELSE
  327. S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  328. $ ( WORK( I )+SAFE1 ) )
  329. END IF
  330. 80 CONTINUE
  331. BERR( J ) = S
  332. *
  333. * Test stopping criterion. Continue iterating if
  334. * 1) The residual BERR(J) is larger than machine epsilon, and
  335. * 2) BERR(J) decreased by at least a factor of 2 during the
  336. * last iteration, and
  337. * 3) At most ITMAX iterations tried.
  338. *
  339. IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  340. $ COUNT.LE.ITMAX ) THEN
  341. *
  342. * Update solution and try again.
  343. *
  344. CALL DPPTRS( UPLO, N, 1, AFP, WORK( N+1 ), N, INFO )
  345. CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
  346. LSTRES = BERR( J )
  347. COUNT = COUNT + 1
  348. GO TO 20
  349. END IF
  350. *
  351. * Bound error from formula
  352. *
  353. * norm(X - XTRUE) / norm(X) .le. FERR =
  354. * norm( abs(inv(A))*
  355. * ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  356. *
  357. * where
  358. * norm(Z) is the magnitude of the largest component of Z
  359. * inv(A) is the inverse of A
  360. * abs(Z) is the componentwise absolute value of the matrix or
  361. * vector Z
  362. * NZ is the maximum number of nonzeros in any row of A, plus 1
  363. * EPS is machine epsilon
  364. *
  365. * The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  366. * is incremented by SAFE1 if the i-th component of
  367. * abs(A)*abs(X) + abs(B) is less than SAFE2.
  368. *
  369. * Use DLACN2 to estimate the infinity-norm of the matrix
  370. * inv(A) * diag(W),
  371. * where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  372. *
  373. DO 90 I = 1, N
  374. IF( WORK( I ).GT.SAFE2 ) THEN
  375. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  376. ELSE
  377. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  378. END IF
  379. 90 CONTINUE
  380. *
  381. KASE = 0
  382. 100 CONTINUE
  383. CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  384. $ KASE, ISAVE )
  385. IF( KASE.NE.0 ) THEN
  386. IF( KASE.EQ.1 ) THEN
  387. *
  388. * Multiply by diag(W)*inv(A**T).
  389. *
  390. CALL DPPTRS( UPLO, N, 1, AFP, WORK( N+1 ), N, INFO )
  391. DO 110 I = 1, N
  392. WORK( N+I ) = WORK( I )*WORK( N+I )
  393. 110 CONTINUE
  394. ELSE IF( KASE.EQ.2 ) THEN
  395. *
  396. * Multiply by inv(A)*diag(W).
  397. *
  398. DO 120 I = 1, N
  399. WORK( N+I ) = WORK( I )*WORK( N+I )
  400. 120 CONTINUE
  401. CALL DPPTRS( UPLO, N, 1, AFP, WORK( N+1 ), N, INFO )
  402. END IF
  403. GO TO 100
  404. END IF
  405. *
  406. * Normalize error.
  407. *
  408. LSTRES = ZERO
  409. DO 130 I = 1, N
  410. LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  411. 130 CONTINUE
  412. IF( LSTRES.NE.ZERO )
  413. $ FERR( J ) = FERR( J ) / LSTRES
  414. *
  415. 140 CONTINUE
  416. *
  417. RETURN
  418. *
  419. * End of DPPRFS
  420. *
  421. END