|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372 |
- *> \brief \b DORMBR
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DORMBR + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dormbr.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dormbr.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dormbr.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
- * LDC, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER SIDE, TRANS, VECT
- * INTEGER INFO, K, LDA, LDC, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C
- *> with
- *> SIDE = 'L' SIDE = 'R'
- *> TRANS = 'N': Q * C C * Q
- *> TRANS = 'T': Q**T * C C * Q**T
- *>
- *> If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C
- *> with
- *> SIDE = 'L' SIDE = 'R'
- *> TRANS = 'N': P * C C * P
- *> TRANS = 'T': P**T * C C * P**T
- *>
- *> Here Q and P**T are the orthogonal matrices determined by DGEBRD when
- *> reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
- *> P**T are defined as products of elementary reflectors H(i) and G(i)
- *> respectively.
- *>
- *> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
- *> order of the orthogonal matrix Q or P**T that is applied.
- *>
- *> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
- *> if nq >= k, Q = H(1) H(2) . . . H(k);
- *> if nq < k, Q = H(1) H(2) . . . H(nq-1).
- *>
- *> If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
- *> if k < nq, P = G(1) G(2) . . . G(k);
- *> if k >= nq, P = G(1) G(2) . . . G(nq-1).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] VECT
- *> \verbatim
- *> VECT is CHARACTER*1
- *> = 'Q': apply Q or Q**T;
- *> = 'P': apply P or P**T.
- *> \endverbatim
- *>
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> = 'L': apply Q, Q**T, P or P**T from the Left;
- *> = 'R': apply Q, Q**T, P or P**T from the Right.
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> = 'N': No transpose, apply Q or P;
- *> = 'T': Transpose, apply Q**T or P**T.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix C. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix C. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> If VECT = 'Q', the number of columns in the original
- *> matrix reduced by DGEBRD.
- *> If VECT = 'P', the number of rows in the original
- *> matrix reduced by DGEBRD.
- *> K >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension
- *> (LDA,min(nq,K)) if VECT = 'Q'
- *> (LDA,nq) if VECT = 'P'
- *> The vectors which define the elementary reflectors H(i) and
- *> G(i), whose products determine the matrices Q and P, as
- *> returned by DGEBRD.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A.
- *> If VECT = 'Q', LDA >= max(1,nq);
- *> if VECT = 'P', LDA >= max(1,min(nq,K)).
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is DOUBLE PRECISION array, dimension (min(nq,K))
- *> TAU(i) must contain the scalar factor of the elementary
- *> reflector H(i) or G(i) which determines Q or P, as returned
- *> by DGEBRD in the array argument TAUQ or TAUP.
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is DOUBLE PRECISION array, dimension (LDC,N)
- *> On entry, the M-by-N matrix C.
- *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
- *> or P*C or P**T*C or C*P or C*P**T.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> If SIDE = 'L', LWORK >= max(1,N);
- *> if SIDE = 'R', LWORK >= max(1,M).
- *> For optimum performance LWORK >= N*NB if SIDE = 'L', and
- *> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
- *> blocksize.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup doubleOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE DORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
- $ LDC, WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER SIDE, TRANS, VECT
- INTEGER INFO, K, LDA, LDC, LWORK, M, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL APPLYQ, LEFT, LQUERY, NOTRAN
- CHARACTER TRANST
- INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL LSAME, ILAENV
- * ..
- * .. External Subroutines ..
- EXTERNAL DORMLQ, DORMQR, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- APPLYQ = LSAME( VECT, 'Q' )
- LEFT = LSAME( SIDE, 'L' )
- NOTRAN = LSAME( TRANS, 'N' )
- LQUERY = ( LWORK.EQ.-1 )
- *
- * NQ is the order of Q or P and NW is the minimum dimension of WORK
- *
- IF( LEFT ) THEN
- NQ = M
- NW = N
- ELSE
- NQ = N
- NW = M
- END IF
- IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
- INFO = -2
- ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
- INFO = -3
- ELSE IF( M.LT.0 ) THEN
- INFO = -4
- ELSE IF( N.LT.0 ) THEN
- INFO = -5
- ELSE IF( K.LT.0 ) THEN
- INFO = -6
- ELSE IF( ( APPLYQ .AND. LDA.LT.MAX( 1, NQ ) ) .OR.
- $ ( .NOT.APPLYQ .AND. LDA.LT.MAX( 1, MIN( NQ, K ) ) ) )
- $ THEN
- INFO = -8
- ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
- INFO = -11
- ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
- INFO = -13
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- IF( APPLYQ ) THEN
- IF( LEFT ) THEN
- NB = ILAENV( 1, 'DORMQR', SIDE // TRANS, M-1, N, M-1,
- $ -1 )
- ELSE
- NB = ILAENV( 1, 'DORMQR', SIDE // TRANS, M, N-1, N-1,
- $ -1 )
- END IF
- ELSE
- IF( LEFT ) THEN
- NB = ILAENV( 1, 'DORMLQ', SIDE // TRANS, M-1, N, M-1,
- $ -1 )
- ELSE
- NB = ILAENV( 1, 'DORMLQ', SIDE // TRANS, M, N-1, N-1,
- $ -1 )
- END IF
- END IF
- LWKOPT = MAX( 1, NW )*NB
- WORK( 1 ) = LWKOPT
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DORMBR', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- WORK( 1 ) = 1
- IF( M.EQ.0 .OR. N.EQ.0 )
- $ RETURN
- *
- IF( APPLYQ ) THEN
- *
- * Apply Q
- *
- IF( NQ.GE.K ) THEN
- *
- * Q was determined by a call to DGEBRD with nq >= k
- *
- CALL DORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
- $ WORK, LWORK, IINFO )
- ELSE IF( NQ.GT.1 ) THEN
- *
- * Q was determined by a call to DGEBRD with nq < k
- *
- IF( LEFT ) THEN
- MI = M - 1
- NI = N
- I1 = 2
- I2 = 1
- ELSE
- MI = M
- NI = N - 1
- I1 = 1
- I2 = 2
- END IF
- CALL DORMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
- $ C( I1, I2 ), LDC, WORK, LWORK, IINFO )
- END IF
- ELSE
- *
- * Apply P
- *
- IF( NOTRAN ) THEN
- TRANST = 'T'
- ELSE
- TRANST = 'N'
- END IF
- IF( NQ.GT.K ) THEN
- *
- * P was determined by a call to DGEBRD with nq > k
- *
- CALL DORMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC,
- $ WORK, LWORK, IINFO )
- ELSE IF( NQ.GT.1 ) THEN
- *
- * P was determined by a call to DGEBRD with nq <= k
- *
- IF( LEFT ) THEN
- MI = M - 1
- NI = N
- I1 = 2
- I2 = 1
- ELSE
- MI = M
- NI = N - 1
- I1 = 1
- I2 = 2
- END IF
- CALL DORMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 1, 2 ), LDA,
- $ TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO )
- END IF
- END IF
- WORK( 1 ) = LWKOPT
- RETURN
- *
- * End of DORMBR
- *
- END
|