You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlatbs.f 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812
  1. *> \brief \b DLATBS solves a triangular banded system of equations.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLATBS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatbs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatbs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatbs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
  22. * SCALE, CNORM, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORMIN, TRANS, UPLO
  26. * INTEGER INFO, KD, LDAB, N
  27. * DOUBLE PRECISION SCALE
  28. * ..
  29. * .. Array Arguments ..
  30. * DOUBLE PRECISION AB( LDAB, * ), CNORM( * ), X( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DLATBS solves one of the triangular systems
  40. *>
  41. *> A *x = s*b or A**T*x = s*b
  42. *>
  43. *> with scaling to prevent overflow, where A is an upper or lower
  44. *> triangular band matrix. Here A**T denotes the transpose of A, x and b
  45. *> are n-element vectors, and s is a scaling factor, usually less than
  46. *> or equal to 1, chosen so that the components of x will be less than
  47. *> the overflow threshold. If the unscaled problem will not cause
  48. *> overflow, the Level 2 BLAS routine DTBSV is called. If the matrix A
  49. *> is singular (A(j,j) = 0 for some j), then s is set to 0 and a
  50. *> non-trivial solution to A*x = 0 is returned.
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] UPLO
  57. *> \verbatim
  58. *> UPLO is CHARACTER*1
  59. *> Specifies whether the matrix A is upper or lower triangular.
  60. *> = 'U': Upper triangular
  61. *> = 'L': Lower triangular
  62. *> \endverbatim
  63. *>
  64. *> \param[in] TRANS
  65. *> \verbatim
  66. *> TRANS is CHARACTER*1
  67. *> Specifies the operation applied to A.
  68. *> = 'N': Solve A * x = s*b (No transpose)
  69. *> = 'T': Solve A**T* x = s*b (Transpose)
  70. *> = 'C': Solve A**T* x = s*b (Conjugate transpose = Transpose)
  71. *> \endverbatim
  72. *>
  73. *> \param[in] DIAG
  74. *> \verbatim
  75. *> DIAG is CHARACTER*1
  76. *> Specifies whether or not the matrix A is unit triangular.
  77. *> = 'N': Non-unit triangular
  78. *> = 'U': Unit triangular
  79. *> \endverbatim
  80. *>
  81. *> \param[in] NORMIN
  82. *> \verbatim
  83. *> NORMIN is CHARACTER*1
  84. *> Specifies whether CNORM has been set or not.
  85. *> = 'Y': CNORM contains the column norms on entry
  86. *> = 'N': CNORM is not set on entry. On exit, the norms will
  87. *> be computed and stored in CNORM.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] N
  91. *> \verbatim
  92. *> N is INTEGER
  93. *> The order of the matrix A. N >= 0.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] KD
  97. *> \verbatim
  98. *> KD is INTEGER
  99. *> The number of subdiagonals or superdiagonals in the
  100. *> triangular matrix A. KD >= 0.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] AB
  104. *> \verbatim
  105. *> AB is DOUBLE PRECISION array, dimension (LDAB,N)
  106. *> The upper or lower triangular band matrix A, stored in the
  107. *> first KD+1 rows of the array. The j-th column of A is stored
  108. *> in the j-th column of the array AB as follows:
  109. *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  110. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
  111. *> \endverbatim
  112. *>
  113. *> \param[in] LDAB
  114. *> \verbatim
  115. *> LDAB is INTEGER
  116. *> The leading dimension of the array AB. LDAB >= KD+1.
  117. *> \endverbatim
  118. *>
  119. *> \param[in,out] X
  120. *> \verbatim
  121. *> X is DOUBLE PRECISION array, dimension (N)
  122. *> On entry, the right hand side b of the triangular system.
  123. *> On exit, X is overwritten by the solution vector x.
  124. *> \endverbatim
  125. *>
  126. *> \param[out] SCALE
  127. *> \verbatim
  128. *> SCALE is DOUBLE PRECISION
  129. *> The scaling factor s for the triangular system
  130. *> A * x = s*b or A**T* x = s*b.
  131. *> If SCALE = 0, the matrix A is singular or badly scaled, and
  132. *> the vector x is an exact or approximate solution to A*x = 0.
  133. *> \endverbatim
  134. *>
  135. *> \param[in,out] CNORM
  136. *> \verbatim
  137. *> CNORM is DOUBLE PRECISION array, dimension (N)
  138. *>
  139. *> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  140. *> contains the norm of the off-diagonal part of the j-th column
  141. *> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
  142. *> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  143. *> must be greater than or equal to the 1-norm.
  144. *>
  145. *> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  146. *> returns the 1-norm of the offdiagonal part of the j-th column
  147. *> of A.
  148. *> \endverbatim
  149. *>
  150. *> \param[out] INFO
  151. *> \verbatim
  152. *> INFO is INTEGER
  153. *> = 0: successful exit
  154. *> < 0: if INFO = -k, the k-th argument had an illegal value
  155. *> \endverbatim
  156. *
  157. * Authors:
  158. * ========
  159. *
  160. *> \author Univ. of Tennessee
  161. *> \author Univ. of California Berkeley
  162. *> \author Univ. of Colorado Denver
  163. *> \author NAG Ltd.
  164. *
  165. *> \date December 2016
  166. *
  167. *> \ingroup doubleOTHERauxiliary
  168. *
  169. *> \par Further Details:
  170. * =====================
  171. *>
  172. *> \verbatim
  173. *>
  174. *> A rough bound on x is computed; if that is less than overflow, DTBSV
  175. *> is called, otherwise, specific code is used which checks for possible
  176. *> overflow or divide-by-zero at every operation.
  177. *>
  178. *> A columnwise scheme is used for solving A*x = b. The basic algorithm
  179. *> if A is lower triangular is
  180. *>
  181. *> x[1:n] := b[1:n]
  182. *> for j = 1, ..., n
  183. *> x(j) := x(j) / A(j,j)
  184. *> x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  185. *> end
  186. *>
  187. *> Define bounds on the components of x after j iterations of the loop:
  188. *> M(j) = bound on x[1:j]
  189. *> G(j) = bound on x[j+1:n]
  190. *> Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  191. *>
  192. *> Then for iteration j+1 we have
  193. *> M(j+1) <= G(j) / | A(j+1,j+1) |
  194. *> G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  195. *> <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  196. *>
  197. *> where CNORM(j+1) is greater than or equal to the infinity-norm of
  198. *> column j+1 of A, not counting the diagonal. Hence
  199. *>
  200. *> G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  201. *> 1<=i<=j
  202. *> and
  203. *>
  204. *> |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  205. *> 1<=i< j
  206. *>
  207. *> Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTBSV if the
  208. *> reciprocal of the largest M(j), j=1,..,n, is larger than
  209. *> max(underflow, 1/overflow).
  210. *>
  211. *> The bound on x(j) is also used to determine when a step in the
  212. *> columnwise method can be performed without fear of overflow. If
  213. *> the computed bound is greater than a large constant, x is scaled to
  214. *> prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  215. *> 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  216. *>
  217. *> Similarly, a row-wise scheme is used to solve A**T*x = b. The basic
  218. *> algorithm for A upper triangular is
  219. *>
  220. *> for j = 1, ..., n
  221. *> x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
  222. *> end
  223. *>
  224. *> We simultaneously compute two bounds
  225. *> G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
  226. *> M(j) = bound on x(i), 1<=i<=j
  227. *>
  228. *> The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  229. *> add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  230. *> Then the bound on x(j) is
  231. *>
  232. *> M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  233. *>
  234. *> <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  235. *> 1<=i<=j
  236. *>
  237. *> and we can safely call DTBSV if 1/M(n) and 1/G(n) are both greater
  238. *> than max(underflow, 1/overflow).
  239. *> \endverbatim
  240. *>
  241. * =====================================================================
  242. SUBROUTINE DLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
  243. $ SCALE, CNORM, INFO )
  244. *
  245. * -- LAPACK auxiliary routine (version 3.7.0) --
  246. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  247. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  248. * December 2016
  249. *
  250. * .. Scalar Arguments ..
  251. CHARACTER DIAG, NORMIN, TRANS, UPLO
  252. INTEGER INFO, KD, LDAB, N
  253. DOUBLE PRECISION SCALE
  254. * ..
  255. * .. Array Arguments ..
  256. DOUBLE PRECISION AB( LDAB, * ), CNORM( * ), X( * )
  257. * ..
  258. *
  259. * =====================================================================
  260. *
  261. * .. Parameters ..
  262. DOUBLE PRECISION ZERO, HALF, ONE
  263. PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
  264. * ..
  265. * .. Local Scalars ..
  266. LOGICAL NOTRAN, NOUNIT, UPPER
  267. INTEGER I, IMAX, J, JFIRST, JINC, JLAST, JLEN, MAIND
  268. DOUBLE PRECISION BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
  269. $ TMAX, TSCAL, USCAL, XBND, XJ, XMAX
  270. * ..
  271. * .. External Functions ..
  272. LOGICAL LSAME
  273. INTEGER IDAMAX
  274. DOUBLE PRECISION DASUM, DDOT, DLAMCH
  275. EXTERNAL LSAME, IDAMAX, DASUM, DDOT, DLAMCH
  276. * ..
  277. * .. External Subroutines ..
  278. EXTERNAL DAXPY, DSCAL, DTBSV, XERBLA
  279. * ..
  280. * .. Intrinsic Functions ..
  281. INTRINSIC ABS, MAX, MIN
  282. * ..
  283. * .. Executable Statements ..
  284. *
  285. INFO = 0
  286. UPPER = LSAME( UPLO, 'U' )
  287. NOTRAN = LSAME( TRANS, 'N' )
  288. NOUNIT = LSAME( DIAG, 'N' )
  289. *
  290. * Test the input parameters.
  291. *
  292. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  293. INFO = -1
  294. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  295. $ LSAME( TRANS, 'C' ) ) THEN
  296. INFO = -2
  297. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  298. INFO = -3
  299. ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  300. $ LSAME( NORMIN, 'N' ) ) THEN
  301. INFO = -4
  302. ELSE IF( N.LT.0 ) THEN
  303. INFO = -5
  304. ELSE IF( KD.LT.0 ) THEN
  305. INFO = -6
  306. ELSE IF( LDAB.LT.KD+1 ) THEN
  307. INFO = -8
  308. END IF
  309. IF( INFO.NE.0 ) THEN
  310. CALL XERBLA( 'DLATBS', -INFO )
  311. RETURN
  312. END IF
  313. *
  314. * Quick return if possible
  315. *
  316. IF( N.EQ.0 )
  317. $ RETURN
  318. *
  319. * Determine machine dependent parameters to control overflow.
  320. *
  321. SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
  322. BIGNUM = ONE / SMLNUM
  323. SCALE = ONE
  324. *
  325. IF( LSAME( NORMIN, 'N' ) ) THEN
  326. *
  327. * Compute the 1-norm of each column, not including the diagonal.
  328. *
  329. IF( UPPER ) THEN
  330. *
  331. * A is upper triangular.
  332. *
  333. DO 10 J = 1, N
  334. JLEN = MIN( KD, J-1 )
  335. CNORM( J ) = DASUM( JLEN, AB( KD+1-JLEN, J ), 1 )
  336. 10 CONTINUE
  337. ELSE
  338. *
  339. * A is lower triangular.
  340. *
  341. DO 20 J = 1, N
  342. JLEN = MIN( KD, N-J )
  343. IF( JLEN.GT.0 ) THEN
  344. CNORM( J ) = DASUM( JLEN, AB( 2, J ), 1 )
  345. ELSE
  346. CNORM( J ) = ZERO
  347. END IF
  348. 20 CONTINUE
  349. END IF
  350. END IF
  351. *
  352. * Scale the column norms by TSCAL if the maximum element in CNORM is
  353. * greater than BIGNUM.
  354. *
  355. IMAX = IDAMAX( N, CNORM, 1 )
  356. TMAX = CNORM( IMAX )
  357. IF( TMAX.LE.BIGNUM ) THEN
  358. TSCAL = ONE
  359. ELSE
  360. TSCAL = ONE / ( SMLNUM*TMAX )
  361. CALL DSCAL( N, TSCAL, CNORM, 1 )
  362. END IF
  363. *
  364. * Compute a bound on the computed solution vector to see if the
  365. * Level 2 BLAS routine DTBSV can be used.
  366. *
  367. J = IDAMAX( N, X, 1 )
  368. XMAX = ABS( X( J ) )
  369. XBND = XMAX
  370. IF( NOTRAN ) THEN
  371. *
  372. * Compute the growth in A * x = b.
  373. *
  374. IF( UPPER ) THEN
  375. JFIRST = N
  376. JLAST = 1
  377. JINC = -1
  378. MAIND = KD + 1
  379. ELSE
  380. JFIRST = 1
  381. JLAST = N
  382. JINC = 1
  383. MAIND = 1
  384. END IF
  385. *
  386. IF( TSCAL.NE.ONE ) THEN
  387. GROW = ZERO
  388. GO TO 50
  389. END IF
  390. *
  391. IF( NOUNIT ) THEN
  392. *
  393. * A is non-unit triangular.
  394. *
  395. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  396. * Initially, G(0) = max{x(i), i=1,...,n}.
  397. *
  398. GROW = ONE / MAX( XBND, SMLNUM )
  399. XBND = GROW
  400. DO 30 J = JFIRST, JLAST, JINC
  401. *
  402. * Exit the loop if the growth factor is too small.
  403. *
  404. IF( GROW.LE.SMLNUM )
  405. $ GO TO 50
  406. *
  407. * M(j) = G(j-1) / abs(A(j,j))
  408. *
  409. TJJ = ABS( AB( MAIND, J ) )
  410. XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  411. IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  412. *
  413. * G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  414. *
  415. GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  416. ELSE
  417. *
  418. * G(j) could overflow, set GROW to 0.
  419. *
  420. GROW = ZERO
  421. END IF
  422. 30 CONTINUE
  423. GROW = XBND
  424. ELSE
  425. *
  426. * A is unit triangular.
  427. *
  428. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  429. *
  430. GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  431. DO 40 J = JFIRST, JLAST, JINC
  432. *
  433. * Exit the loop if the growth factor is too small.
  434. *
  435. IF( GROW.LE.SMLNUM )
  436. $ GO TO 50
  437. *
  438. * G(j) = G(j-1)*( 1 + CNORM(j) )
  439. *
  440. GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  441. 40 CONTINUE
  442. END IF
  443. 50 CONTINUE
  444. *
  445. ELSE
  446. *
  447. * Compute the growth in A**T * x = b.
  448. *
  449. IF( UPPER ) THEN
  450. JFIRST = 1
  451. JLAST = N
  452. JINC = 1
  453. MAIND = KD + 1
  454. ELSE
  455. JFIRST = N
  456. JLAST = 1
  457. JINC = -1
  458. MAIND = 1
  459. END IF
  460. *
  461. IF( TSCAL.NE.ONE ) THEN
  462. GROW = ZERO
  463. GO TO 80
  464. END IF
  465. *
  466. IF( NOUNIT ) THEN
  467. *
  468. * A is non-unit triangular.
  469. *
  470. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  471. * Initially, M(0) = max{x(i), i=1,...,n}.
  472. *
  473. GROW = ONE / MAX( XBND, SMLNUM )
  474. XBND = GROW
  475. DO 60 J = JFIRST, JLAST, JINC
  476. *
  477. * Exit the loop if the growth factor is too small.
  478. *
  479. IF( GROW.LE.SMLNUM )
  480. $ GO TO 80
  481. *
  482. * G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  483. *
  484. XJ = ONE + CNORM( J )
  485. GROW = MIN( GROW, XBND / XJ )
  486. *
  487. * M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  488. *
  489. TJJ = ABS( AB( MAIND, J ) )
  490. IF( XJ.GT.TJJ )
  491. $ XBND = XBND*( TJJ / XJ )
  492. 60 CONTINUE
  493. GROW = MIN( GROW, XBND )
  494. ELSE
  495. *
  496. * A is unit triangular.
  497. *
  498. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  499. *
  500. GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  501. DO 70 J = JFIRST, JLAST, JINC
  502. *
  503. * Exit the loop if the growth factor is too small.
  504. *
  505. IF( GROW.LE.SMLNUM )
  506. $ GO TO 80
  507. *
  508. * G(j) = ( 1 + CNORM(j) )*G(j-1)
  509. *
  510. XJ = ONE + CNORM( J )
  511. GROW = GROW / XJ
  512. 70 CONTINUE
  513. END IF
  514. 80 CONTINUE
  515. END IF
  516. *
  517. IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  518. *
  519. * Use the Level 2 BLAS solve if the reciprocal of the bound on
  520. * elements of X is not too small.
  521. *
  522. CALL DTBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, X, 1 )
  523. ELSE
  524. *
  525. * Use a Level 1 BLAS solve, scaling intermediate results.
  526. *
  527. IF( XMAX.GT.BIGNUM ) THEN
  528. *
  529. * Scale X so that its components are less than or equal to
  530. * BIGNUM in absolute value.
  531. *
  532. SCALE = BIGNUM / XMAX
  533. CALL DSCAL( N, SCALE, X, 1 )
  534. XMAX = BIGNUM
  535. END IF
  536. *
  537. IF( NOTRAN ) THEN
  538. *
  539. * Solve A * x = b
  540. *
  541. DO 110 J = JFIRST, JLAST, JINC
  542. *
  543. * Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  544. *
  545. XJ = ABS( X( J ) )
  546. IF( NOUNIT ) THEN
  547. TJJS = AB( MAIND, J )*TSCAL
  548. ELSE
  549. TJJS = TSCAL
  550. IF( TSCAL.EQ.ONE )
  551. $ GO TO 100
  552. END IF
  553. TJJ = ABS( TJJS )
  554. IF( TJJ.GT.SMLNUM ) THEN
  555. *
  556. * abs(A(j,j)) > SMLNUM:
  557. *
  558. IF( TJJ.LT.ONE ) THEN
  559. IF( XJ.GT.TJJ*BIGNUM ) THEN
  560. *
  561. * Scale x by 1/b(j).
  562. *
  563. REC = ONE / XJ
  564. CALL DSCAL( N, REC, X, 1 )
  565. SCALE = SCALE*REC
  566. XMAX = XMAX*REC
  567. END IF
  568. END IF
  569. X( J ) = X( J ) / TJJS
  570. XJ = ABS( X( J ) )
  571. ELSE IF( TJJ.GT.ZERO ) THEN
  572. *
  573. * 0 < abs(A(j,j)) <= SMLNUM:
  574. *
  575. IF( XJ.GT.TJJ*BIGNUM ) THEN
  576. *
  577. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  578. * to avoid overflow when dividing by A(j,j).
  579. *
  580. REC = ( TJJ*BIGNUM ) / XJ
  581. IF( CNORM( J ).GT.ONE ) THEN
  582. *
  583. * Scale by 1/CNORM(j) to avoid overflow when
  584. * multiplying x(j) times column j.
  585. *
  586. REC = REC / CNORM( J )
  587. END IF
  588. CALL DSCAL( N, REC, X, 1 )
  589. SCALE = SCALE*REC
  590. XMAX = XMAX*REC
  591. END IF
  592. X( J ) = X( J ) / TJJS
  593. XJ = ABS( X( J ) )
  594. ELSE
  595. *
  596. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  597. * scale = 0, and compute a solution to A*x = 0.
  598. *
  599. DO 90 I = 1, N
  600. X( I ) = ZERO
  601. 90 CONTINUE
  602. X( J ) = ONE
  603. XJ = ONE
  604. SCALE = ZERO
  605. XMAX = ZERO
  606. END IF
  607. 100 CONTINUE
  608. *
  609. * Scale x if necessary to avoid overflow when adding a
  610. * multiple of column j of A.
  611. *
  612. IF( XJ.GT.ONE ) THEN
  613. REC = ONE / XJ
  614. IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  615. *
  616. * Scale x by 1/(2*abs(x(j))).
  617. *
  618. REC = REC*HALF
  619. CALL DSCAL( N, REC, X, 1 )
  620. SCALE = SCALE*REC
  621. END IF
  622. ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  623. *
  624. * Scale x by 1/2.
  625. *
  626. CALL DSCAL( N, HALF, X, 1 )
  627. SCALE = SCALE*HALF
  628. END IF
  629. *
  630. IF( UPPER ) THEN
  631. IF( J.GT.1 ) THEN
  632. *
  633. * Compute the update
  634. * x(max(1,j-kd):j-1) := x(max(1,j-kd):j-1) -
  635. * x(j)* A(max(1,j-kd):j-1,j)
  636. *
  637. JLEN = MIN( KD, J-1 )
  638. CALL DAXPY( JLEN, -X( J )*TSCAL,
  639. $ AB( KD+1-JLEN, J ), 1, X( J-JLEN ), 1 )
  640. I = IDAMAX( J-1, X, 1 )
  641. XMAX = ABS( X( I ) )
  642. END IF
  643. ELSE IF( J.LT.N ) THEN
  644. *
  645. * Compute the update
  646. * x(j+1:min(j+kd,n)) := x(j+1:min(j+kd,n)) -
  647. * x(j) * A(j+1:min(j+kd,n),j)
  648. *
  649. JLEN = MIN( KD, N-J )
  650. IF( JLEN.GT.0 )
  651. $ CALL DAXPY( JLEN, -X( J )*TSCAL, AB( 2, J ), 1,
  652. $ X( J+1 ), 1 )
  653. I = J + IDAMAX( N-J, X( J+1 ), 1 )
  654. XMAX = ABS( X( I ) )
  655. END IF
  656. 110 CONTINUE
  657. *
  658. ELSE
  659. *
  660. * Solve A**T * x = b
  661. *
  662. DO 160 J = JFIRST, JLAST, JINC
  663. *
  664. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  665. * k<>j
  666. *
  667. XJ = ABS( X( J ) )
  668. USCAL = TSCAL
  669. REC = ONE / MAX( XMAX, ONE )
  670. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  671. *
  672. * If x(j) could overflow, scale x by 1/(2*XMAX).
  673. *
  674. REC = REC*HALF
  675. IF( NOUNIT ) THEN
  676. TJJS = AB( MAIND, J )*TSCAL
  677. ELSE
  678. TJJS = TSCAL
  679. END IF
  680. TJJ = ABS( TJJS )
  681. IF( TJJ.GT.ONE ) THEN
  682. *
  683. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  684. *
  685. REC = MIN( ONE, REC*TJJ )
  686. USCAL = USCAL / TJJS
  687. END IF
  688. IF( REC.LT.ONE ) THEN
  689. CALL DSCAL( N, REC, X, 1 )
  690. SCALE = SCALE*REC
  691. XMAX = XMAX*REC
  692. END IF
  693. END IF
  694. *
  695. SUMJ = ZERO
  696. IF( USCAL.EQ.ONE ) THEN
  697. *
  698. * If the scaling needed for A in the dot product is 1,
  699. * call DDOT to perform the dot product.
  700. *
  701. IF( UPPER ) THEN
  702. JLEN = MIN( KD, J-1 )
  703. SUMJ = DDOT( JLEN, AB( KD+1-JLEN, J ), 1,
  704. $ X( J-JLEN ), 1 )
  705. ELSE
  706. JLEN = MIN( KD, N-J )
  707. IF( JLEN.GT.0 )
  708. $ SUMJ = DDOT( JLEN, AB( 2, J ), 1, X( J+1 ), 1 )
  709. END IF
  710. ELSE
  711. *
  712. * Otherwise, use in-line code for the dot product.
  713. *
  714. IF( UPPER ) THEN
  715. JLEN = MIN( KD, J-1 )
  716. DO 120 I = 1, JLEN
  717. SUMJ = SUMJ + ( AB( KD+I-JLEN, J )*USCAL )*
  718. $ X( J-JLEN-1+I )
  719. 120 CONTINUE
  720. ELSE
  721. JLEN = MIN( KD, N-J )
  722. DO 130 I = 1, JLEN
  723. SUMJ = SUMJ + ( AB( I+1, J )*USCAL )*X( J+I )
  724. 130 CONTINUE
  725. END IF
  726. END IF
  727. *
  728. IF( USCAL.EQ.TSCAL ) THEN
  729. *
  730. * Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
  731. * was not used to scale the dotproduct.
  732. *
  733. X( J ) = X( J ) - SUMJ
  734. XJ = ABS( X( J ) )
  735. IF( NOUNIT ) THEN
  736. *
  737. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  738. *
  739. TJJS = AB( MAIND, J )*TSCAL
  740. ELSE
  741. TJJS = TSCAL
  742. IF( TSCAL.EQ.ONE )
  743. $ GO TO 150
  744. END IF
  745. TJJ = ABS( TJJS )
  746. IF( TJJ.GT.SMLNUM ) THEN
  747. *
  748. * abs(A(j,j)) > SMLNUM:
  749. *
  750. IF( TJJ.LT.ONE ) THEN
  751. IF( XJ.GT.TJJ*BIGNUM ) THEN
  752. *
  753. * Scale X by 1/abs(x(j)).
  754. *
  755. REC = ONE / XJ
  756. CALL DSCAL( N, REC, X, 1 )
  757. SCALE = SCALE*REC
  758. XMAX = XMAX*REC
  759. END IF
  760. END IF
  761. X( J ) = X( J ) / TJJS
  762. ELSE IF( TJJ.GT.ZERO ) THEN
  763. *
  764. * 0 < abs(A(j,j)) <= SMLNUM:
  765. *
  766. IF( XJ.GT.TJJ*BIGNUM ) THEN
  767. *
  768. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  769. *
  770. REC = ( TJJ*BIGNUM ) / XJ
  771. CALL DSCAL( N, REC, X, 1 )
  772. SCALE = SCALE*REC
  773. XMAX = XMAX*REC
  774. END IF
  775. X( J ) = X( J ) / TJJS
  776. ELSE
  777. *
  778. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  779. * scale = 0, and compute a solution to A**T*x = 0.
  780. *
  781. DO 140 I = 1, N
  782. X( I ) = ZERO
  783. 140 CONTINUE
  784. X( J ) = ONE
  785. SCALE = ZERO
  786. XMAX = ZERO
  787. END IF
  788. 150 CONTINUE
  789. ELSE
  790. *
  791. * Compute x(j) := x(j) / A(j,j) - sumj if the dot
  792. * product has already been divided by 1/A(j,j).
  793. *
  794. X( J ) = X( J ) / TJJS - SUMJ
  795. END IF
  796. XMAX = MAX( XMAX, ABS( X( J ) ) )
  797. 160 CONTINUE
  798. END IF
  799. SCALE = SCALE / TSCAL
  800. END IF
  801. *
  802. * Scale the column norms by 1/TSCAL for return.
  803. *
  804. IF( TSCAL.NE.ONE ) THEN
  805. CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
  806. END IF
  807. *
  808. RETURN
  809. *
  810. * End of DLATBS
  811. *
  812. END