|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413 |
- *> \brief \b DLASDQ computes the SVD of a real bidiagonal matrix with diagonal d and off-diagonal e. Used by sbdsdc.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLASDQ + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasdq.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasdq.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasdq.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT,
- * U, LDU, C, LDC, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION C( LDC, * ), D( * ), E( * ), U( LDU, * ),
- * $ VT( LDVT, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLASDQ computes the singular value decomposition (SVD) of a real
- *> (upper or lower) bidiagonal matrix with diagonal D and offdiagonal
- *> E, accumulating the transformations if desired. Letting B denote
- *> the input bidiagonal matrix, the algorithm computes orthogonal
- *> matrices Q and P such that B = Q * S * P**T (P**T denotes the transpose
- *> of P). The singular values S are overwritten on D.
- *>
- *> The input matrix U is changed to U * Q if desired.
- *> The input matrix VT is changed to P**T * VT if desired.
- *> The input matrix C is changed to Q**T * C if desired.
- *>
- *> See "Computing Small Singular Values of Bidiagonal Matrices With
- *> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
- *> LAPACK Working Note #3, for a detailed description of the algorithm.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> On entry, UPLO specifies whether the input bidiagonal matrix
- *> is upper or lower bidiagonal, and whether it is square are
- *> not.
- *> UPLO = 'U' or 'u' B is upper bidiagonal.
- *> UPLO = 'L' or 'l' B is lower bidiagonal.
- *> \endverbatim
- *>
- *> \param[in] SQRE
- *> \verbatim
- *> SQRE is INTEGER
- *> = 0: then the input matrix is N-by-N.
- *> = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
- *> (N+1)-by-N if UPLU = 'L'.
- *>
- *> The bidiagonal matrix has
- *> N = NL + NR + 1 rows and
- *> M = N + SQRE >= N columns.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the number of rows and columns
- *> in the matrix. N must be at least 0.
- *> \endverbatim
- *>
- *> \param[in] NCVT
- *> \verbatim
- *> NCVT is INTEGER
- *> On entry, NCVT specifies the number of columns of
- *> the matrix VT. NCVT must be at least 0.
- *> \endverbatim
- *>
- *> \param[in] NRU
- *> \verbatim
- *> NRU is INTEGER
- *> On entry, NRU specifies the number of rows of
- *> the matrix U. NRU must be at least 0.
- *> \endverbatim
- *>
- *> \param[in] NCC
- *> \verbatim
- *> NCC is INTEGER
- *> On entry, NCC specifies the number of columns of
- *> the matrix C. NCC must be at least 0.
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (N)
- *> On entry, D contains the diagonal entries of the
- *> bidiagonal matrix whose SVD is desired. On normal exit,
- *> D contains the singular values in ascending order.
- *> \endverbatim
- *>
- *> \param[in,out] E
- *> \verbatim
- *> E is DOUBLE PRECISION array.
- *> dimension is (N-1) if SQRE = 0 and N if SQRE = 1.
- *> On entry, the entries of E contain the offdiagonal entries
- *> of the bidiagonal matrix whose SVD is desired. On normal
- *> exit, E will contain 0. If the algorithm does not converge,
- *> D and E will contain the diagonal and superdiagonal entries
- *> of a bidiagonal matrix orthogonally equivalent to the one
- *> given as input.
- *> \endverbatim
- *>
- *> \param[in,out] VT
- *> \verbatim
- *> VT is DOUBLE PRECISION array, dimension (LDVT, NCVT)
- *> On entry, contains a matrix which on exit has been
- *> premultiplied by P**T, dimension N-by-NCVT if SQRE = 0
- *> and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).
- *> \endverbatim
- *>
- *> \param[in] LDVT
- *> \verbatim
- *> LDVT is INTEGER
- *> On entry, LDVT specifies the leading dimension of VT as
- *> declared in the calling (sub) program. LDVT must be at
- *> least 1. If NCVT is nonzero LDVT must also be at least N.
- *> \endverbatim
- *>
- *> \param[in,out] U
- *> \verbatim
- *> U is DOUBLE PRECISION array, dimension (LDU, N)
- *> On entry, contains a matrix which on exit has been
- *> postmultiplied by Q, dimension NRU-by-N if SQRE = 0
- *> and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> On entry, LDU specifies the leading dimension of U as
- *> declared in the calling (sub) program. LDU must be at
- *> least max( 1, NRU ) .
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is DOUBLE PRECISION array, dimension (LDC, NCC)
- *> On entry, contains an N-by-NCC matrix which on exit
- *> has been premultiplied by Q**T dimension N-by-NCC if SQRE = 0
- *> and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> On entry, LDC specifies the leading dimension of C as
- *> declared in the calling (sub) program. LDC must be at
- *> least 1. If NCC is nonzero, LDC must also be at least N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (4*N)
- *> Workspace. Only referenced if one of NCVT, NRU, or NCC is
- *> nonzero, and if N is at least 2.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> On exit, a value of 0 indicates a successful exit.
- *> If INFO < 0, argument number -INFO is illegal.
- *> If INFO > 0, the algorithm did not converge, and INFO
- *> specifies how many superdiagonals did not converge.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date June 2016
- *
- *> \ingroup OTHERauxiliary
- *
- *> \par Contributors:
- * ==================
- *>
- *> Ming Gu and Huan Ren, Computer Science Division, University of
- *> California at Berkeley, USA
- *>
- * =====================================================================
- SUBROUTINE DLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT,
- $ U, LDU, C, LDC, WORK, INFO )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * June 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION C( LDC, * ), D( * ), E( * ), U( LDU, * ),
- $ VT( LDVT, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER ( ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL ROTATE
- INTEGER I, ISUB, IUPLO, J, NP1, SQRE1
- DOUBLE PRECISION CS, R, SMIN, SN
- * ..
- * .. External Subroutines ..
- EXTERNAL DBDSQR, DLARTG, DLASR, DSWAP, XERBLA
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IUPLO = 0
- IF( LSAME( UPLO, 'U' ) )
- $ IUPLO = 1
- IF( LSAME( UPLO, 'L' ) )
- $ IUPLO = 2
- IF( IUPLO.EQ.0 ) THEN
- INFO = -1
- ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( NCVT.LT.0 ) THEN
- INFO = -4
- ELSE IF( NRU.LT.0 ) THEN
- INFO = -5
- ELSE IF( NCC.LT.0 ) THEN
- INFO = -6
- ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
- $ ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
- INFO = -10
- ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
- INFO = -12
- ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
- $ ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
- INFO = -14
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DLASDQ', -INFO )
- RETURN
- END IF
- IF( N.EQ.0 )
- $ RETURN
- *
- * ROTATE is true if any singular vectors desired, false otherwise
- *
- ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
- NP1 = N + 1
- SQRE1 = SQRE
- *
- * If matrix non-square upper bidiagonal, rotate to be lower
- * bidiagonal. The rotations are on the right.
- *
- IF( ( IUPLO.EQ.1 ) .AND. ( SQRE1.EQ.1 ) ) THEN
- DO 10 I = 1, N - 1
- CALL DLARTG( D( I ), E( I ), CS, SN, R )
- D( I ) = R
- E( I ) = SN*D( I+1 )
- D( I+1 ) = CS*D( I+1 )
- IF( ROTATE ) THEN
- WORK( I ) = CS
- WORK( N+I ) = SN
- END IF
- 10 CONTINUE
- CALL DLARTG( D( N ), E( N ), CS, SN, R )
- D( N ) = R
- E( N ) = ZERO
- IF( ROTATE ) THEN
- WORK( N ) = CS
- WORK( N+N ) = SN
- END IF
- IUPLO = 2
- SQRE1 = 0
- *
- * Update singular vectors if desired.
- *
- IF( NCVT.GT.0 )
- $ CALL DLASR( 'L', 'V', 'F', NP1, NCVT, WORK( 1 ),
- $ WORK( NP1 ), VT, LDVT )
- END IF
- *
- * If matrix lower bidiagonal, rotate to be upper bidiagonal
- * by applying Givens rotations on the left.
- *
- IF( IUPLO.EQ.2 ) THEN
- DO 20 I = 1, N - 1
- CALL DLARTG( D( I ), E( I ), CS, SN, R )
- D( I ) = R
- E( I ) = SN*D( I+1 )
- D( I+1 ) = CS*D( I+1 )
- IF( ROTATE ) THEN
- WORK( I ) = CS
- WORK( N+I ) = SN
- END IF
- 20 CONTINUE
- *
- * If matrix (N+1)-by-N lower bidiagonal, one additional
- * rotation is needed.
- *
- IF( SQRE1.EQ.1 ) THEN
- CALL DLARTG( D( N ), E( N ), CS, SN, R )
- D( N ) = R
- IF( ROTATE ) THEN
- WORK( N ) = CS
- WORK( N+N ) = SN
- END IF
- END IF
- *
- * Update singular vectors if desired.
- *
- IF( NRU.GT.0 ) THEN
- IF( SQRE1.EQ.0 ) THEN
- CALL DLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ),
- $ WORK( NP1 ), U, LDU )
- ELSE
- CALL DLASR( 'R', 'V', 'F', NRU, NP1, WORK( 1 ),
- $ WORK( NP1 ), U, LDU )
- END IF
- END IF
- IF( NCC.GT.0 ) THEN
- IF( SQRE1.EQ.0 ) THEN
- CALL DLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ),
- $ WORK( NP1 ), C, LDC )
- ELSE
- CALL DLASR( 'L', 'V', 'F', NP1, NCC, WORK( 1 ),
- $ WORK( NP1 ), C, LDC )
- END IF
- END IF
- END IF
- *
- * Call DBDSQR to compute the SVD of the reduced real
- * N-by-N upper bidiagonal matrix.
- *
- CALL DBDSQR( 'U', N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,
- $ LDC, WORK, INFO )
- *
- * Sort the singular values into ascending order (insertion sort on
- * singular values, but only one transposition per singular vector)
- *
- DO 40 I = 1, N
- *
- * Scan for smallest D(I).
- *
- ISUB = I
- SMIN = D( I )
- DO 30 J = I + 1, N
- IF( D( J ).LT.SMIN ) THEN
- ISUB = J
- SMIN = D( J )
- END IF
- 30 CONTINUE
- IF( ISUB.NE.I ) THEN
- *
- * Swap singular values and vectors.
- *
- D( ISUB ) = D( I )
- D( I ) = SMIN
- IF( NCVT.GT.0 )
- $ CALL DSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( I, 1 ), LDVT )
- IF( NRU.GT.0 )
- $ CALL DSWAP( NRU, U( 1, ISUB ), 1, U( 1, I ), 1 )
- IF( NCC.GT.0 )
- $ CALL DSWAP( NCC, C( ISUB, 1 ), LDC, C( I, 1 ), LDC )
- END IF
- 40 CONTINUE
- *
- RETURN
- *
- * End of DLASDQ
- *
- END
|