|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414 |
- *> \brief <b> DGTSVX computes the solution to system of linear equations A * X = B for GT matrices </b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DGTSVX + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgtsvx.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgtsvx.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgtsvx.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
- * DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
- * WORK, IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER FACT, TRANS
- * INTEGER INFO, LDB, LDX, N, NRHS
- * DOUBLE PRECISION RCOND
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * ), IWORK( * )
- * DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ),
- * $ DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
- * $ FERR( * ), WORK( * ), X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DGTSVX uses the LU factorization to compute the solution to a real
- *> system of linear equations A * X = B or A**T * X = B,
- *> where A is a tridiagonal matrix of order N and X and B are N-by-NRHS
- *> matrices.
- *>
- *> Error bounds on the solution and a condition estimate are also
- *> provided.
- *> \endverbatim
- *
- *> \par Description:
- * =================
- *>
- *> \verbatim
- *>
- *> The following steps are performed:
- *>
- *> 1. If FACT = 'N', the LU decomposition is used to factor the matrix A
- *> as A = L * U, where L is a product of permutation and unit lower
- *> bidiagonal matrices and U is upper triangular with nonzeros in
- *> only the main diagonal and first two superdiagonals.
- *>
- *> 2. If some U(i,i)=0, so that U is exactly singular, then the routine
- *> returns with INFO = i. Otherwise, the factored form of A is used
- *> to estimate the condition number of the matrix A. If the
- *> reciprocal of the condition number is less than machine precision,
- *> INFO = N+1 is returned as a warning, but the routine still goes on
- *> to solve for X and compute error bounds as described below.
- *>
- *> 3. The system of equations is solved for X using the factored form
- *> of A.
- *>
- *> 4. Iterative refinement is applied to improve the computed solution
- *> matrix and calculate error bounds and backward error estimates
- *> for it.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] FACT
- *> \verbatim
- *> FACT is CHARACTER*1
- *> Specifies whether or not the factored form of A has been
- *> supplied on entry.
- *> = 'F': DLF, DF, DUF, DU2, and IPIV contain the factored
- *> form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV
- *> will not be modified.
- *> = 'N': The matrix will be copied to DLF, DF, and DUF
- *> and factored.
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the form of the system of equations:
- *> = 'N': A * X = B (No transpose)
- *> = 'T': A**T * X = B (Transpose)
- *> = 'C': A**H * X = B (Conjugate transpose = Transpose)
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] DL
- *> \verbatim
- *> DL is DOUBLE PRECISION array, dimension (N-1)
- *> The (n-1) subdiagonal elements of A.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (N)
- *> The n diagonal elements of A.
- *> \endverbatim
- *>
- *> \param[in] DU
- *> \verbatim
- *> DU is DOUBLE PRECISION array, dimension (N-1)
- *> The (n-1) superdiagonal elements of A.
- *> \endverbatim
- *>
- *> \param[in,out] DLF
- *> \verbatim
- *> DLF is DOUBLE PRECISION array, dimension (N-1)
- *> If FACT = 'F', then DLF is an input argument and on entry
- *> contains the (n-1) multipliers that define the matrix L from
- *> the LU factorization of A as computed by DGTTRF.
- *>
- *> If FACT = 'N', then DLF is an output argument and on exit
- *> contains the (n-1) multipliers that define the matrix L from
- *> the LU factorization of A.
- *> \endverbatim
- *>
- *> \param[in,out] DF
- *> \verbatim
- *> DF is DOUBLE PRECISION array, dimension (N)
- *> If FACT = 'F', then DF is an input argument and on entry
- *> contains the n diagonal elements of the upper triangular
- *> matrix U from the LU factorization of A.
- *>
- *> If FACT = 'N', then DF is an output argument and on exit
- *> contains the n diagonal elements of the upper triangular
- *> matrix U from the LU factorization of A.
- *> \endverbatim
- *>
- *> \param[in,out] DUF
- *> \verbatim
- *> DUF is DOUBLE PRECISION array, dimension (N-1)
- *> If FACT = 'F', then DUF is an input argument and on entry
- *> contains the (n-1) elements of the first superdiagonal of U.
- *>
- *> If FACT = 'N', then DUF is an output argument and on exit
- *> contains the (n-1) elements of the first superdiagonal of U.
- *> \endverbatim
- *>
- *> \param[in,out] DU2
- *> \verbatim
- *> DU2 is DOUBLE PRECISION array, dimension (N-2)
- *> If FACT = 'F', then DU2 is an input argument and on entry
- *> contains the (n-2) elements of the second superdiagonal of
- *> U.
- *>
- *> If FACT = 'N', then DU2 is an output argument and on exit
- *> contains the (n-2) elements of the second superdiagonal of
- *> U.
- *> \endverbatim
- *>
- *> \param[in,out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> If FACT = 'F', then IPIV is an input argument and on entry
- *> contains the pivot indices from the LU factorization of A as
- *> computed by DGTTRF.
- *>
- *> If FACT = 'N', then IPIV is an output argument and on exit
- *> contains the pivot indices from the LU factorization of A;
- *> row i of the matrix was interchanged with row IPIV(i).
- *> IPIV(i) will always be either i or i+1; IPIV(i) = i indicates
- *> a row interchange was not required.
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
- *> The N-by-NRHS right hand side matrix B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
- *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is DOUBLE PRECISION
- *> The estimate of the reciprocal condition number of the matrix
- *> A. If RCOND is less than the machine precision (in
- *> particular, if RCOND = 0), the matrix is singular to working
- *> precision. This condition is indicated by a return code of
- *> INFO > 0.
- *> \endverbatim
- *>
- *> \param[out] FERR
- *> \verbatim
- *> FERR is DOUBLE PRECISION array, dimension (NRHS)
- *> The estimated forward error bound for each solution vector
- *> X(j) (the j-th column of the solution matrix X).
- *> If XTRUE is the true solution corresponding to X(j), FERR(j)
- *> is an estimated upper bound for the magnitude of the largest
- *> element in (X(j) - XTRUE) divided by the magnitude of the
- *> largest element in X(j). The estimate is as reliable as
- *> the estimate for RCOND, and is almost always a slight
- *> overestimate of the true error.
- *> \endverbatim
- *>
- *> \param[out] BERR
- *> \verbatim
- *> BERR is DOUBLE PRECISION array, dimension (NRHS)
- *> The componentwise relative backward error of each solution
- *> vector X(j) (i.e., the smallest relative change in
- *> any element of A or B that makes X(j) an exact solution).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (3*N)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, and i is
- *> <= N: U(i,i) is exactly zero. The factorization
- *> has not been completed unless i = N, but the
- *> factor U is exactly singular, so the solution
- *> and error bounds could not be computed.
- *> RCOND = 0 is returned.
- *> = N+1: U is nonsingular, but RCOND is less than machine
- *> precision, meaning that the matrix is singular
- *> to working precision. Nevertheless, the
- *> solution and error bounds are computed because
- *> there are a number of situations where the
- *> computed solution can be more accurate than the
- *> value of RCOND would suggest.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup doubleGTsolve
- *
- * =====================================================================
- SUBROUTINE DGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
- $ DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
- $ WORK, IWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER FACT, TRANS
- INTEGER INFO, LDB, LDX, N, NRHS
- DOUBLE PRECISION RCOND
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * ), IWORK( * )
- DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ),
- $ DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
- $ FERR( * ), WORK( * ), X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER ( ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL NOFACT, NOTRAN
- CHARACTER NORM
- DOUBLE PRECISION ANORM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, DLANGT
- EXTERNAL LSAME, DLAMCH, DLANGT
- * ..
- * .. External Subroutines ..
- EXTERNAL DCOPY, DGTCON, DGTRFS, DGTTRF, DGTTRS, DLACPY,
- $ XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- NOFACT = LSAME( FACT, 'N' )
- NOTRAN = LSAME( TRANS, 'N' )
- IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
- $ LSAME( TRANS, 'C' ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -14
- ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
- INFO = -16
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DGTSVX', -INFO )
- RETURN
- END IF
- *
- IF( NOFACT ) THEN
- *
- * Compute the LU factorization of A.
- *
- CALL DCOPY( N, D, 1, DF, 1 )
- IF( N.GT.1 ) THEN
- CALL DCOPY( N-1, DL, 1, DLF, 1 )
- CALL DCOPY( N-1, DU, 1, DUF, 1 )
- END IF
- CALL DGTTRF( N, DLF, DF, DUF, DU2, IPIV, INFO )
- *
- * Return if INFO is non-zero.
- *
- IF( INFO.GT.0 )THEN
- RCOND = ZERO
- RETURN
- END IF
- END IF
- *
- * Compute the norm of the matrix A.
- *
- IF( NOTRAN ) THEN
- NORM = '1'
- ELSE
- NORM = 'I'
- END IF
- ANORM = DLANGT( NORM, N, DL, D, DU )
- *
- * Compute the reciprocal of the condition number of A.
- *
- CALL DGTCON( NORM, N, DLF, DF, DUF, DU2, IPIV, ANORM, RCOND, WORK,
- $ IWORK, INFO )
- *
- * Compute the solution vectors X.
- *
- CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
- CALL DGTTRS( TRANS, N, NRHS, DLF, DF, DUF, DU2, IPIV, X, LDX,
- $ INFO )
- *
- * Use iterative refinement to improve the computed solutions and
- * compute error bounds and backward error estimates for them.
- *
- CALL DGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV,
- $ B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
- *
- * Set INFO = N+1 if the matrix is singular to working precision.
- *
- IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
- $ INFO = N + 1
- *
- RETURN
- *
- * End of DGTSVX
- *
- END
|