You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgels.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504
  1. *> \brief <b> DGELS solves overdetermined or underdetermined systems for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGELS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgels.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgels.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgels.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
  22. * INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER TRANS
  26. * INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> DGELS solves overdetermined or underdetermined real linear systems
  39. *> involving an M-by-N matrix A, or its transpose, using a QR or LQ
  40. *> factorization of A. It is assumed that A has full rank.
  41. *>
  42. *> The following options are provided:
  43. *>
  44. *> 1. If TRANS = 'N' and m >= n: find the least squares solution of
  45. *> an overdetermined system, i.e., solve the least squares problem
  46. *> minimize || B - A*X ||.
  47. *>
  48. *> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
  49. *> an underdetermined system A * X = B.
  50. *>
  51. *> 3. If TRANS = 'T' and m >= n: find the minimum norm solution of
  52. *> an underdetermined system A**T * X = B.
  53. *>
  54. *> 4. If TRANS = 'T' and m < n: find the least squares solution of
  55. *> an overdetermined system, i.e., solve the least squares problem
  56. *> minimize || B - A**T * X ||.
  57. *>
  58. *> Several right hand side vectors b and solution vectors x can be
  59. *> handled in a single call; they are stored as the columns of the
  60. *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
  61. *> matrix X.
  62. *> \endverbatim
  63. *
  64. * Arguments:
  65. * ==========
  66. *
  67. *> \param[in] TRANS
  68. *> \verbatim
  69. *> TRANS is CHARACTER*1
  70. *> = 'N': the linear system involves A;
  71. *> = 'T': the linear system involves A**T.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] M
  75. *> \verbatim
  76. *> M is INTEGER
  77. *> The number of rows of the matrix A. M >= 0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] N
  81. *> \verbatim
  82. *> N is INTEGER
  83. *> The number of columns of the matrix A. N >= 0.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] NRHS
  87. *> \verbatim
  88. *> NRHS is INTEGER
  89. *> The number of right hand sides, i.e., the number of
  90. *> columns of the matrices B and X. NRHS >=0.
  91. *> \endverbatim
  92. *>
  93. *> \param[in,out] A
  94. *> \verbatim
  95. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  96. *> On entry, the M-by-N matrix A.
  97. *> On exit,
  98. *> if M >= N, A is overwritten by details of its QR
  99. *> factorization as returned by DGEQRF;
  100. *> if M < N, A is overwritten by details of its LQ
  101. *> factorization as returned by DGELQF.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] LDA
  105. *> \verbatim
  106. *> LDA is INTEGER
  107. *> The leading dimension of the array A. LDA >= max(1,M).
  108. *> \endverbatim
  109. *>
  110. *> \param[in,out] B
  111. *> \verbatim
  112. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  113. *> On entry, the matrix B of right hand side vectors, stored
  114. *> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
  115. *> if TRANS = 'T'.
  116. *> On exit, if INFO = 0, B is overwritten by the solution
  117. *> vectors, stored columnwise:
  118. *> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
  119. *> squares solution vectors; the residual sum of squares for the
  120. *> solution in each column is given by the sum of squares of
  121. *> elements N+1 to M in that column;
  122. *> if TRANS = 'N' and m < n, rows 1 to N of B contain the
  123. *> minimum norm solution vectors;
  124. *> if TRANS = 'T' and m >= n, rows 1 to M of B contain the
  125. *> minimum norm solution vectors;
  126. *> if TRANS = 'T' and m < n, rows 1 to M of B contain the
  127. *> least squares solution vectors; the residual sum of squares
  128. *> for the solution in each column is given by the sum of
  129. *> squares of elements M+1 to N in that column.
  130. *> \endverbatim
  131. *>
  132. *> \param[in] LDB
  133. *> \verbatim
  134. *> LDB is INTEGER
  135. *> The leading dimension of the array B. LDB >= MAX(1,M,N).
  136. *> \endverbatim
  137. *>
  138. *> \param[out] WORK
  139. *> \verbatim
  140. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  141. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  142. *> \endverbatim
  143. *>
  144. *> \param[in] LWORK
  145. *> \verbatim
  146. *> LWORK is INTEGER
  147. *> The dimension of the array WORK.
  148. *> LWORK >= max( 1, MN + max( MN, NRHS ) ).
  149. *> For optimal performance,
  150. *> LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
  151. *> where MN = min(M,N) and NB is the optimum block size.
  152. *>
  153. *> If LWORK = -1, then a workspace query is assumed; the routine
  154. *> only calculates the optimal size of the WORK array, returns
  155. *> this value as the first entry of the WORK array, and no error
  156. *> message related to LWORK is issued by XERBLA.
  157. *> \endverbatim
  158. *>
  159. *> \param[out] INFO
  160. *> \verbatim
  161. *> INFO is INTEGER
  162. *> = 0: successful exit
  163. *> < 0: if INFO = -i, the i-th argument had an illegal value
  164. *> > 0: if INFO = i, the i-th diagonal element of the
  165. *> triangular factor of A is zero, so that A does not have
  166. *> full rank; the least squares solution could not be
  167. *> computed.
  168. *> \endverbatim
  169. *
  170. * Authors:
  171. * ========
  172. *
  173. *> \author Univ. of Tennessee
  174. *> \author Univ. of California Berkeley
  175. *> \author Univ. of Colorado Denver
  176. *> \author NAG Ltd.
  177. *
  178. *> \date December 2016
  179. *
  180. *> \ingroup doubleGEsolve
  181. *
  182. * =====================================================================
  183. SUBROUTINE DGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
  184. $ INFO )
  185. *
  186. * -- LAPACK driver routine (version 3.7.0) --
  187. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  188. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  189. * December 2016
  190. *
  191. * .. Scalar Arguments ..
  192. CHARACTER TRANS
  193. INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
  194. * ..
  195. * .. Array Arguments ..
  196. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
  197. * ..
  198. *
  199. * =====================================================================
  200. *
  201. * .. Parameters ..
  202. DOUBLE PRECISION ZERO, ONE
  203. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  204. * ..
  205. * .. Local Scalars ..
  206. LOGICAL LQUERY, TPSD
  207. INTEGER BROW, I, IASCL, IBSCL, J, MN, NB, SCLLEN, WSIZE
  208. DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM
  209. * ..
  210. * .. Local Arrays ..
  211. DOUBLE PRECISION RWORK( 1 )
  212. * ..
  213. * .. External Functions ..
  214. LOGICAL LSAME
  215. INTEGER ILAENV
  216. DOUBLE PRECISION DLAMCH, DLANGE
  217. EXTERNAL LSAME, ILAENV, DLABAD, DLAMCH, DLANGE
  218. * ..
  219. * .. External Subroutines ..
  220. EXTERNAL DGELQF, DGEQRF, DLASCL, DLASET, DORMLQ, DORMQR,
  221. $ DTRTRS, XERBLA
  222. * ..
  223. * .. Intrinsic Functions ..
  224. INTRINSIC DBLE, MAX, MIN
  225. * ..
  226. * .. Executable Statements ..
  227. *
  228. * Test the input arguments.
  229. *
  230. INFO = 0
  231. MN = MIN( M, N )
  232. LQUERY = ( LWORK.EQ.-1 )
  233. IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN
  234. INFO = -1
  235. ELSE IF( M.LT.0 ) THEN
  236. INFO = -2
  237. ELSE IF( N.LT.0 ) THEN
  238. INFO = -3
  239. ELSE IF( NRHS.LT.0 ) THEN
  240. INFO = -4
  241. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  242. INFO = -6
  243. ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  244. INFO = -8
  245. ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
  246. $ THEN
  247. INFO = -10
  248. END IF
  249. *
  250. * Figure out optimal block size
  251. *
  252. IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
  253. *
  254. TPSD = .TRUE.
  255. IF( LSAME( TRANS, 'N' ) )
  256. $ TPSD = .FALSE.
  257. *
  258. IF( M.GE.N ) THEN
  259. NB = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
  260. IF( TPSD ) THEN
  261. NB = MAX( NB, ILAENV( 1, 'DORMQR', 'LN', M, NRHS, N,
  262. $ -1 ) )
  263. ELSE
  264. NB = MAX( NB, ILAENV( 1, 'DORMQR', 'LT', M, NRHS, N,
  265. $ -1 ) )
  266. END IF
  267. ELSE
  268. NB = ILAENV( 1, 'DGELQF', ' ', M, N, -1, -1 )
  269. IF( TPSD ) THEN
  270. NB = MAX( NB, ILAENV( 1, 'DORMLQ', 'LT', N, NRHS, M,
  271. $ -1 ) )
  272. ELSE
  273. NB = MAX( NB, ILAENV( 1, 'DORMLQ', 'LN', N, NRHS, M,
  274. $ -1 ) )
  275. END IF
  276. END IF
  277. *
  278. WSIZE = MAX( 1, MN+MAX( MN, NRHS )*NB )
  279. WORK( 1 ) = DBLE( WSIZE )
  280. *
  281. END IF
  282. *
  283. IF( INFO.NE.0 ) THEN
  284. CALL XERBLA( 'DGELS ', -INFO )
  285. RETURN
  286. ELSE IF( LQUERY ) THEN
  287. RETURN
  288. END IF
  289. *
  290. * Quick return if possible
  291. *
  292. IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  293. CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
  294. RETURN
  295. END IF
  296. *
  297. * Get machine parameters
  298. *
  299. SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  300. BIGNUM = ONE / SMLNUM
  301. CALL DLABAD( SMLNUM, BIGNUM )
  302. *
  303. * Scale A, B if max element outside range [SMLNUM,BIGNUM]
  304. *
  305. ANRM = DLANGE( 'M', M, N, A, LDA, RWORK )
  306. IASCL = 0
  307. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  308. *
  309. * Scale matrix norm up to SMLNUM
  310. *
  311. CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  312. IASCL = 1
  313. ELSE IF( ANRM.GT.BIGNUM ) THEN
  314. *
  315. * Scale matrix norm down to BIGNUM
  316. *
  317. CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  318. IASCL = 2
  319. ELSE IF( ANRM.EQ.ZERO ) THEN
  320. *
  321. * Matrix all zero. Return zero solution.
  322. *
  323. CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
  324. GO TO 50
  325. END IF
  326. *
  327. BROW = M
  328. IF( TPSD )
  329. $ BROW = N
  330. BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
  331. IBSCL = 0
  332. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  333. *
  334. * Scale matrix norm up to SMLNUM
  335. *
  336. CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
  337. $ INFO )
  338. IBSCL = 1
  339. ELSE IF( BNRM.GT.BIGNUM ) THEN
  340. *
  341. * Scale matrix norm down to BIGNUM
  342. *
  343. CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
  344. $ INFO )
  345. IBSCL = 2
  346. END IF
  347. *
  348. IF( M.GE.N ) THEN
  349. *
  350. * compute QR factorization of A
  351. *
  352. CALL DGEQRF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
  353. $ INFO )
  354. *
  355. * workspace at least N, optimally N*NB
  356. *
  357. IF( .NOT.TPSD ) THEN
  358. *
  359. * Least-Squares Problem min || A * X - B ||
  360. *
  361. * B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
  362. *
  363. CALL DORMQR( 'Left', 'Transpose', M, NRHS, N, A, LDA,
  364. $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  365. $ INFO )
  366. *
  367. * workspace at least NRHS, optimally NRHS*NB
  368. *
  369. * B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
  370. *
  371. CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
  372. $ A, LDA, B, LDB, INFO )
  373. *
  374. IF( INFO.GT.0 ) THEN
  375. RETURN
  376. END IF
  377. *
  378. SCLLEN = N
  379. *
  380. ELSE
  381. *
  382. * Underdetermined system of equations A**T * X = B
  383. *
  384. * B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
  385. *
  386. CALL DTRTRS( 'Upper', 'Transpose', 'Non-unit', N, NRHS,
  387. $ A, LDA, B, LDB, INFO )
  388. *
  389. IF( INFO.GT.0 ) THEN
  390. RETURN
  391. END IF
  392. *
  393. * B(N+1:M,1:NRHS) = ZERO
  394. *
  395. DO 20 J = 1, NRHS
  396. DO 10 I = N + 1, M
  397. B( I, J ) = ZERO
  398. 10 CONTINUE
  399. 20 CONTINUE
  400. *
  401. * B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
  402. *
  403. CALL DORMQR( 'Left', 'No transpose', M, NRHS, N, A, LDA,
  404. $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  405. $ INFO )
  406. *
  407. * workspace at least NRHS, optimally NRHS*NB
  408. *
  409. SCLLEN = M
  410. *
  411. END IF
  412. *
  413. ELSE
  414. *
  415. * Compute LQ factorization of A
  416. *
  417. CALL DGELQF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
  418. $ INFO )
  419. *
  420. * workspace at least M, optimally M*NB.
  421. *
  422. IF( .NOT.TPSD ) THEN
  423. *
  424. * underdetermined system of equations A * X = B
  425. *
  426. * B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
  427. *
  428. CALL DTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
  429. $ A, LDA, B, LDB, INFO )
  430. *
  431. IF( INFO.GT.0 ) THEN
  432. RETURN
  433. END IF
  434. *
  435. * B(M+1:N,1:NRHS) = 0
  436. *
  437. DO 40 J = 1, NRHS
  438. DO 30 I = M + 1, N
  439. B( I, J ) = ZERO
  440. 30 CONTINUE
  441. 40 CONTINUE
  442. *
  443. * B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS)
  444. *
  445. CALL DORMLQ( 'Left', 'Transpose', N, NRHS, M, A, LDA,
  446. $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  447. $ INFO )
  448. *
  449. * workspace at least NRHS, optimally NRHS*NB
  450. *
  451. SCLLEN = N
  452. *
  453. ELSE
  454. *
  455. * overdetermined system min || A**T * X - B ||
  456. *
  457. * B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
  458. *
  459. CALL DORMLQ( 'Left', 'No transpose', N, NRHS, M, A, LDA,
  460. $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  461. $ INFO )
  462. *
  463. * workspace at least NRHS, optimally NRHS*NB
  464. *
  465. * B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
  466. *
  467. CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
  468. $ A, LDA, B, LDB, INFO )
  469. *
  470. IF( INFO.GT.0 ) THEN
  471. RETURN
  472. END IF
  473. *
  474. SCLLEN = M
  475. *
  476. END IF
  477. *
  478. END IF
  479. *
  480. * Undo scaling
  481. *
  482. IF( IASCL.EQ.1 ) THEN
  483. CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
  484. $ INFO )
  485. ELSE IF( IASCL.EQ.2 ) THEN
  486. CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
  487. $ INFO )
  488. END IF
  489. IF( IBSCL.EQ.1 ) THEN
  490. CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
  491. $ INFO )
  492. ELSE IF( IBSCL.EQ.2 ) THEN
  493. CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
  494. $ INFO )
  495. END IF
  496. *
  497. 50 CONTINUE
  498. WORK( 1 ) = DBLE( WSIZE )
  499. *
  500. RETURN
  501. *
  502. * End of DGELS
  503. *
  504. END